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f. S4MARY

*The research under this contract has focused upon dynamical and thermal

phenomena in sunspots. The research may be roughly divided into three

categories: (i) a study of the possible mechanisms for cooling a sunspot,

including wave cooling and inhibition of convection; (ii) a study of resonant

modes of magneto-atmospheric waves in a sunspot umbra, as an explanation for

umbral oscillations; and (iii) a suggestion that the Sun's radius and surface

temperature may vary over the solar cycle due to changes in total magnetic

buoyancy in the convection zone. The last topic, while somewhat outside of

the scope of the initial proposal, nevertheless arose in the course of this

research.

The question of the mechanism that causes a sunspot to be cooler than

its surroundings has proved to be quite controversial. The traditional

explanation has been based on the inhibition of convective heat transport by

the strong magnetic field in the sunspot (Biermann 1941). An alternative

mechanism, based on cooling by an outward flux of Alfvdn waves (or other

magnetohydrodynamic waves), has been advocated, most recently by Parker

(1974, 1975). Both of these mechanisms have been investigated further under

this contract, with the conclusion that the inhibition mechanism is by far

the more likely explanation.

Thomas (1978; section 2 of this report) investigated the reflection of

Alfvdn waves in the umbral atmosphere. He considered the reflection of waves

propagating upward and downward in the umbra from a generating source

-0 (overstable convection) in a shallow layer just below the umbral photosphere.

The study used a three-layer model of the umbral atmosphere that reproduces
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all of the essential features of the vertical structure in the convection

zone, photospherechromosphere, transition region, and corona. The results

show very strong downward reflection of Alfvdn waves propagating upward into

the photosphere and low chromosphere. This result is in good agreement with

the observations of Beckers (1976) and Beckers and Schneeberger (1977), which

show a large drop in wave energy density from the photosphere to the high

chromosphere. The observations put an upper limit on the upward wave energy

flux that is several orders of magnitude below the "missing" flux of a

sunspot. Thus, both theory and observation here tend to rule out substantial

cooling by upward-propagating Alfv~n waves.

On the other hand, Thomas (1978) found only very weak upward reflection

of Alfv~n waves propagating downward into the convection zone. This left

open the possibility of cooling by downward propagating waves. Several

difficulties associated with cooling by downward-propagating waves were

noted, however. In particular, it was speculated that if one were to study

more realistic wave motions, including the effects of compression and

buoyancy (rather than the pure Alfvdn mode), then one would find much

stronger upward reflection in the convection zone due to the rising temperature

(and sound speed) with depth. Further work by Scheuer and Thomas (1980;

section 5 of this report) confirmed this expectation. Using the same model

umbral atmosphere, but considering the full magneto-atmospheric wave equations

(with nonzero horizontal wavenumber), Scheuer and Thomas found strong upward

reflection in the convection zone, due primarily to the increasing sound

speed with depth. This strong reflection holds true even for waves with

horizontal wavelengths comparable to the spot diameter. Thus, cooling by

downward-propagating waves seems to be ruled out too. Our conclusion is

6



that the wave cooling mechanism may be ruled out on theoretical and

observational grounds.

In order to assess the possibility of sunspot cooling by the mechanism

of inhibition of convection, Clark (1979, Section 3 of this report) studied

simple thermal models of sunspots which involve solutions to the steady heat

equation with an appropriate distribution of thermal conductivity. Similar

studies had been made by Parker (1974), Eschrich and Krause (1977), and

Spruit (1977). Clark chose a simple model for the sunspot which allowed him

to investigate the dependence of the solution on the various spot parameters,

such as the depth of region of inhibition. He found that his model sunspot,

like those of Eschrich and Krause and of Spruit, produced surface temperature

distributions very much like that observed in sunspots. Detailed results

from Clark's model include the following: (i) the edge of the umbra is sharp,

even for deep spots (depth of inhibition region >t diameter); (ii) deep spots

produce weak bright rings, whereas shallow spots produce intense bright rings

(which aren't observed); and (iii) only a thin surface layer, about one

temperature scale height in thickness, is cool, with the deeper parts of the

spot somewhat hotter than the surroundings. The three thermal models of

sunspots due to Eschrich and Krause (1977), Spruit (1977), and Clark (1979)

each use a different specification for the thermal conductivity and for the

spot geometry, and yet all three produce acceptable surface temperature

distributions. This lends considerable support for the inhibition mechanism.

In further work on thermal models of sunspots, Clark has studied the

effects of a depth-dependent thermal conductivity, first discussed by Spruit

(1977). Using some simple analytical solutions, Clark has shown that the

horizontal spreading of the heat flux depends on both the variable conductivity

7
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and the boundary condition at the bottom of the convection zone. As a

particular example, consider a steady heat source at depth zo below the

top of the convection zone, and take the convection zone to be infinitely

deep. At the top of the convection zone assume a radiative boundary condition.

If the thermal conductivity is constant, all of the heat emitted by the source

flows out the top, as one would expect. If, however, the thermal conductivity

K varies with depth z, the result can be very different. For the

conductivity law suggested by Spruit, namely K E(l+az) 2 with c-1 =127 kin,

much of the heat emitted by the source flows off to infinity rather than

leaving through the top. In fact, the fraction of the heat flux leaving

through the top is

(I +xzo ) (I +h)

where h is the superadiabatic temperature scale height at the surface. Thus

for deep disturbances (cz o >> l) very little of the released heat ever reaches

the surface. This result shows that the boundary condition at the bottom of

the convection zone is likely to be very important.

Scheuer and Thomas (1980; Section 5 of this report) have presented a

detailed theory of umbral oscillations, identifying them as the lowest resonant

mode of fast magneto-atmospheric wave in the umbral atmosphere, excited by

overstable convection in the subphotosphere. Their theory is similar to that

of Uchida and Sakurai (1975), except that Scheuer and Thomas use the full

magneto-atmospheric wave equations rather than the "quasi-Alfvdn" approximation

of Uchida and Sakurai. Numerical solutions of the full wave equations are

obtained for forced and free oscillations in a three-layer model of a sunspot

umbra. Several new features of the wave motion arise from this study, leading

8
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to a new understandg of umbral oscillations. The resonant mode is trapped

primarily by the increasing Alfvdn speed upward into the chromosphere and by

the increasing sound speed downward into the convection zone. The downward

reflection is not complete, however; a small fraction of the total energy

escapes to large heights by converting into the form of a pure acoustic wave

along the vertical magnetic field lines. The change in character of the wave

with height, from Alfv~n-like to acoustic-like, is one of the more interest-

ing features predicted by the full equations. It is also found that the

increasing sound speed in the convection zone, not the increasing density

(as proposed by Uchida and Sakurai), provides the necessary upward reflection

for the trapped mode. For numerical values of the model parameters based on

a typical sunspot, the lowest resonant fast mode has a period of 153 s,

typical of umbral oscillations.

On another topic, Thomas (1979, Section 4 of this report) has suggested

that the solar radius and surface temperature may vary with the solar cycle,

due to changes in the total magnetic buoyancy in the convection zone. This

idea was prompted by the observations of Livingston (1978), which show a

decrease in surface temperature of the Sun with increasing solar activity.

Livingston interprets this to imply a corresponding decrease in luminosity,

but Thomas points out that it could also be due to a small increase in the

solar radius with little or no change in luminosity. The mechanism proposed

for the expansion with increasing solar activity is based on increasing

magnetic buoyancy in the convection zone as the solar dynamo moves toward

solar maximum. Rough estimates of the difference in magnetic flux in the

convection zone between solar maximum and minimum indicate that this mechanism

may be important. The historical record of observations of the solar radius

9
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is quite inconsistent, but there is evidence of variations of the solar radius

with the solar cycle, with maximum radius at maximum activity. Accurate

monitoring of the solar radius over a solar cycle is needed to evaluate this

idea and to provide needed information for the relation between solar

luminosity, temperature, and size.
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THE REFLECTION OF ALFV.N WAVES AND THE COOLING OF SUNSPOTS
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ABSTRACT
As one means of evaluating the possibility that sunspots are cooled by a flux of Alfvin waves,

the reflection of vertically propagating Alfv6n waves in a three-layer model of a sunspot umbra
is studied. The results show strong downward reflection of Alfv~n waves in the photosphere and
low chromosphere, with very little wave energy penetrating as high as the corona. This is in
agreement with recent observations. The model umbra also shows very weak upward reflection
of Alfv6n waves propagating downward into the convection zone. The results suggest that, if
sunspots are indeed cooled by Alfv~n waves, these waves must escape downward into the solar
interior.

Subject headings: hydromagnetics - Sun: sunspots

I. INTRODUCTION sunspot. The observations of Beckers (1976) and
mechanism that causes a sunspot to be cooler Beckers and Schneeberger (1977), taken together, in-

Thean is is ses a unst oo ler dicate a strong downward reflection of Alfv6n waves
than its surroundings is still not understood. Bier- in the sunspot atmosphere. Beckers (1976) puts an
mann's (1941) suggestion that the cause is the in- upper bound of 2.5 x 101°ergscm-2s - 1 on the
hibition of convection by the intense magnetic field upward energy flux of Alfvn waves in the umbral
in the sunspot has often been accepted but has never u pr en of anw ne umbra)
developed into a full-fledged theory. Parker (1974a, b, photosphere, and Beckers and Schneeberger (1977)
1975a, b) recently revived an alternative suggestion, upward energy flux of Alfvn waves in the corona
based on earlier work by others (Danielson 1965; above a sunspot umbra. The latter flux limit is well
Musman 1967; Savage 1969; Moore 1973), that the below the "missing" flux of 5 x 10 liergscm-s-

cooling is due to a flux of Alfv6n waves (or other needed to cool a sunspot. These observations leave
magneto-atmospheric waves) generated by overstable open the possibility that the Alfv6n waves escape
convection in the umbral subphotosphere (see also downward into the solar interior.
Roberts 1976). It is possible, of course, that both If we assume a purely vertical, uniform umbral
mechanisms operate simultaneously; indeed, it is the magnetic field B0 = (0, 0, Bo), in a Cartesian co-
inhibiting effect of the magnetic field on convective ordinate system (x, y, z) with z upward, and assume
motions that leads to the overstability that supposedly purely horizontal motions with velocity a
generates the Alfv6n waves. purel h nal otin th e oc

Parker's ideas have led to a lively controversy over [u(z, t), 0, 0], then we obtain the equation
several points. Cowling (1976) has objected to the 02U
high thermal efficiency required for the "refrigera- t--- 2

tion" of a sunspot by a flux of waves (see the rebuttal VAz)

* by Parker 1977). By means of a simple thermal model, describing vertically propagating pure Alfv6n waves
Parker (1974a) argued that the inhibition mechanism in the umbra, with Alfv6n speed
would not produce the observed surface temperature
distribution of a sunspot. But other thermal models VA(Z) - [Bo 2/41ir1p(z)] 112

(Eschrich and Krause 1977; Spruit 1977) have pro-
duced acceptable sunspots, and Clark (1978) has that varies due to the varying density p(z). If we
shown that this point hinges on what one assumes the assume an oscillatory solution of the form u(z, t) =

depth of a sunspot to be (see also Wilson 1971). :(z) exp (iwt), equation (1) becomes
Boruta (1977) has argued that the formation of a
sunspot is more readily explained by the wave-cooling d2  __

2 2

mechanism. Another question concerns the intrinsic dZ VA =O
stability of a fully developed sunspot (Parker 1975b;
Meyer, Schmidt, and Weiss 1977), which may depend For a specified density distribution p(z), we can solve
on the cooling mechanism. equation (2) to determine effective reflection coeffi-

* In the present paper we deal with a specific problem cients for Alfvdn waves in the atmosphere. This type
associated with the possible cooling by Alfv6n waves: of problem is important in the study of waves in
the escape of Alfv6n waves may be limited by re- layered media (see Brekhovskikh 1960), and is
flections in the strong vertical density gradients in the analogous, for example, to the problem of reflection
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276 THOMAS Vol. 225

of light in a medium in which the index of refraction T1 z)
varies in the direction of propagation.

Geronicolas (1977) has considered this problem
with the density distribution' T ' T1

p(z) = Po[l - (pI/po) tanh kz] (3) Corona
representing the sunspot, where Po, P,, and k are
parameters. He chose values of the parameters to chromosphere
match p(z) with Spruit's (1974) model of the convec- @0
tion zone. The level z = 0 corresponds to the base of T-To
the umbral photosphere. Geronicolas found only a Z
slight net downward reflection of Alfv6n waves in this
atmosphere. (To be precise, he found that if Alfv6n L photosphere
waves are emitted upward and downward with equal--z 0
intensity at z = 0, then the net reflection is such that
the upward energy flux is 46%o f the total, instead of T = To - Oz (0,0)
50% as in the case of no net reflection.) If we take
this result together with the observations discussed convection zone
above, we would conclude that Alfv~n waves are not
cooling sunspots.

Objections can be made to Geronicolas's density
distribution (3), however. It gives a good fit to den- FIG. 1.-Schematic diagram of the three-layer temperature
sities in detailed umbral models only over a very distribution in the model umbra.
limited range of height in and near the photosphere.
The density (3) approaches uniform values a short region is represented as a discontinuity in tempera-
distance above and below the photosphere, whereas ture (and density) at z = zt. Pressure must be con-
the true solar density continues to vary strongly at tinuous across z = zt, however, and thus the density
all levels above and below the surface. The net effect in layer 3 is given by
of this inconsistency is that Geronicolas's model
severely underestimates the downward reflection of p(z) = po exp (-zt/Ho) exp [-(z- zt)/H
Alfv~n waves in a sunspot. Here we propose a more
realistic, three-layer model of the vertical density z > z, (5)
distribution in a sunspot umbra, and show that it
leads to strong downward reflection of Alfvkn waves, where H, = RTl/g is the scale height in this layer.

Layer I, which represents the umbral convection
II. THE MODEL UMBRA zone, is assumed to have a linear temperature distribu-

tion of the form T(z) = T, - fz, with P > 0. The
The calculation of reflection coefficients for waves value of P may be chosen equal to or slightly greater

in a variable atmosphere is a case where approximate than the adiabatic gradient P, = glc,. The corre-
methods, such as the WKB method, usually fail. For sponding density distribution in layer I is then
this reason it is desirable to have a model umbra that
is simple enough to allow exact solution of the wave p(z) = Po - z < 0, (6)
equation (2), but detailed enough to give a fairly HO)
accurate representation of the vertical sunspot
structure. where a = Rplg is a dimensionless measure of the

We adopt as our model umbra an atmosphere with temperature gradient 9.
a uniform vertical magnetic field and the three-layer Layers 2 and 3 are the same as the two-layer model
temperature distribution shown in Figure I. Layer 2 umbra studied by Uchida and Sakurai (1975) in con-
is isothermal at temperature T0 and represents the nection with umbral oscillations. The same tempera-
umbral photosphere and chromosphere. The density ture structure as in layers 2 and 3, but with a vertical
in layer 2 is thus given by dipole magnetic field, was studied by Uchida and

Kaburaki (1974) in connection with the heating of
p(Z) = P0 exp (-z/HO), 0 _< z !5 z,, (4) the chromosphere and corona above sunspots. We

shall see here that layer 3 (the corona) is unimportant
where o - RT0/g is the density scale height in this as far as the reflection of Alfv6n waves that might be
layer. Layer 3, which represents the corona, is iso- cooling a sunspot is concerned.
thermal at temperature Ti (> TO), and the transition

I The formula for p(:) has been changed here to agree with Ill. DOWNWARD REFLECTION OF ALFVtN WAVES
our present sign convention. Geronicolas took the z-axis to We imagine that Alfvtn waves are generated in a
point downward. The problem of Alfvtn wave reflection with
the same density distribution. (3), has been considered by thin layer near z = 0 in the model umbra, with equal
Adam (1976) in a different context intensity upward and downward, and we then ask
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how much of the wave energy is reflected downward wavelength. This result should not be surprising; any
or upward. First we consider the downward reflection density distribution with p --* 0 as z --i + Qo will give
from layers 2 and 3. To isolate this aspect of the R, - I. Of more importance here is the fact that, for
problem, we imagine for the moment that the region wavelengths expected for Alfv6n waves associated
z < 0 is homogeneous with density po and that there with sunspot cooling, the reflection occurs quite low
is a train of plane Alfv6n waves of fixed frequency w, in the umbral atmosphere. The Alfvdn waves do not
and unit amplitude incident upon z = 0 from below, propagate far enough upward to cool the spot.
We then write, for z < 0, A reasonable estimate of the scale height in layer 2

0+(is Ho = 100 km corresponding roughly to T.--
u(z,t) = exp iaw~t_- + Uexp [j,(t + ), 4500 K. Beckers (1976) estimates that upward-prop-

S V A 0  Vo vagating Alfvn waves that might be cooling a sunspot
would have wavelengths in the range 15-40 km. For

(7) these wavelengths, a a 10r, and we can use the
where v = (B0

2 /4,r1,p 0)"12 is the Alfv6n speed at asymptotic forms
z =0. The first term on the right-hand side of /2 112 4
equation (7) is an incident (upward propagating) wave Jo(a) - - cos a -
of unit amplitude. The second term on the right-hand /

side is the reflected (downward propagating) wave of 1x

undetermined amplitude U. The reflected amplitude is Ji(a) = sin a -
determined by matching the solution (7) to the ap-
propriate solution in layers 2 and 3. The proper Then equations (9) and (10) give
matching conditions at the interfaces (z = 0 and
z = z,) are that the velocity 4 and the x-component of fa1 = (2-a)"2Jo(C).
the magnetic field perturbation be continuous across the
interface; the latter condition is equivalent to requiring As z - + oo(t -+ 0), Jo(C) -* 1, and the wave amplitude
df/dz to be continuous across the interface. Once U approaches a uniform value (2wa) 112 , while the kinetic
is determined, the downward reflection coefficient for energy density pfaJ2 decreases rapidly because of the
energy, Rd, is given by Rd = I U 12. exponentially decreasing mass density. (The magnetic

First, let us ignore layer 3 and assume that the energy density also decreases exponentially with in-
density distribution of layer 2 (eq. [4]) extends to creasing z [Ferraro 1954].) We can write
z = + Qo. (The reason for doing this will become clear
in a moment.) As first shown by Ferraro (1954; see p~aI 2 = 2wapJo2( ) < 2,rpo exp (-z/Ho),
also Ferraro and Plumpton 1958), the wave equation and thus most of the wave energy is reflected down-
(2) with density distribution (4) can be transformed ward within the first few scale heights above z = 0.
into Bessel's equation, A reasonable estimate of the height of the transition

+ C d + =. region is z, = 2000 km. Since this is 20 scale heights
d + 0 (8) above z = 0 in our model, only a very small fractionof the wave energy penetrates up to the transition

with the change of independent variable C = region, and the effect of the corona (layer 3) is un-
a exp (- z/2Ho), where a = 2 Howl/vA,. Note that the important as far as the reflection of the Alfv6n waves
parameter a can also be written as a = 41rHo/A. where is concerned. For completeness the solution with
A = 21 v,,,w is the wavelength of the incident AIfvdn layer 3 included is presented in the Appendix. The
wave; thus a is a nondimensional wavenumber. The downward reflection coefficient is again unity, and
general solution of equation (8) is written as usual as the results of the present section are shown to be valid

in the appropriate limit.
d(C) = AJoQ) + B Yo(C) (9) Note that the solution 4(t) oc Jo(C) oscillates with

increasing z for : > 0 (C < a) before becoming essen-
We require the solution to be finite as z --* + oo (i.e., tially uniform as z --* + o (C --) 0). Since, for example,
outgoing wave as z -- + oo), so B = 0. Then, matching JO(0.4) = 0.96, the wave amplitude reaches 96% of
4 and di2/dz in solutions (7) and (9) at z = 0 (C = a), its asymptotic value at height z0 = -2Ho log (0.4/a).
we obtain The height :0 is greater for waves of shorter wave-

length (larger a); waves of shorter wavelength (higher
A 2 (10) frequency) propagate farther in the direction of in-

A Jo(a) + UJ(a)' creasing Alfvn speed. But even for a wavelength as
an short as 10km (a = 40), the height zo = 1150 km
and is well below the transition zone. For z > zo, the wave

; U =[JI(a) + iUo(a)1 (1 amplitude is essentially constant, and the energy

J(a) - UJ(a) density continues to decrease exponentially in pro-
portion to the mass density. The result that the strong

Thus, Rd = JU1
2 

= I for any value of a, and there is downward reflection of Alfvn waves occurs very low
total downward reflection of Alfv6n waves of any in the sunspot atmosphere helps to justify our initial

13
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assumption of a purely vertical magnetic field in the and
umbra.

In the observations of Beckers (1976) and Beckers V a /
and Schneeberger (1977), the directly observed quan- [ ' (a + + H 1  +
tity is the rms velocity of Alfv6n waves causing the
nonthermal line broadening. The values they obtain jHf2)I0a - 1 (2)(a 1 ()
for the rms velocity are roughly 1.5 km s - for the ['a+ + a + I] (15)
photosphere and 7.5 kms -' for the corona. This
small observed change in rms velocity with height is The Hankel functions are complex valued, so I VI # i
consistent with the solution presented here. here. To evaluate V we must first choose an appro-

priate value of a, the dimensionless temperature
IV. UPWARD REFLECTION OF ALFVIN WAVES gradient in layer I. To avoid tedious computation we

To isolate the problem of determining the upward shall choose values of a such that v = a/(a + 1) and
Y - I = - 1/(a + i) are among the fractional ordersreflection coefficient in layer I, we imagine the region for which tables of Bessel functions are available. The

z > 0 to be homogeneous with density po and con- values a = (giving v = 4, v - I = -J) and a :=sider a train of plane Alfv6n waves of fixed frequency (giving Y = * and Y - I =- -) seem most appro-
incident upon z = 0 from above. We write, for z > 0, priate. We can write

u(z,)= exp iQ t+ + Vexp [i t- . . Y c,-c____P j
(12) where P. = g/c, is the adiabatic temperature gradient.

The first term on the right-hand side of equation (12) Thus,
is an incident (downward propagating) wave of unit
amplitude, and the second term on the right-hand , 1 )I . (16)side is the reflected (upward propagating) wave of
undetermined amplitude V.

The basic wave equation (2) can be solved exactly We can place bounds on a as follows. We want
in layer 1, where the density is given by equation (6). ft/p, > I, which requires a > (y - 1)/y. Most models
If we let of the umbral subphotosphere show density increasing

+ with depth more rapidly than a linear variation, and- (04l)we see from equation (6) that this requires a < 1.a + HO) Thus, we have (y - 1)/y <a 45 <. The lower bound
equals i for y = or I for y = j. Thus, the two values

where a = 2Hoc/vo as before, then the general solu- a = I and a = 4 pretty well cover the expected range.
tion of equation (2) in layer I can be expressed as Values of V and of the upward reflection coefficient
(Watson 1966) (for energy) R, = IVI I have been obtained by ex-

= '[AH,"1 ( ) + BH 1
2)(,?)], (13) pressing the Hankel functions in equation (15) in

terms of Bessel functions of the first kind, and usingwhere s = a/(a + I) and where H,"1 and H,(2 are tabled values of the Bessel functions of fractional
Hankel functions of the first and second kinds of order. Table I gives values of R. for different dimen-
order v. For z -- -o (,9 -+ o), the principal asymp- sionless wavenumbers a. For a >> I, corresponding to
totic forms of the Hankel functions are the short wavelengths (15-40 kin) discussed in the

previous section, we can find a simple asymptoticH . (, 12 ,, exp i - + !r expression for R.. Using Hankel's asymptotic ex-\ 41J pansion

(12) exp{_ij.#. -2+ 1)4]}. H,(-)(1) [i- ---8-I) +...]

Thus, as z -+ -o (, -o +x), we see that H," repre- { - 2 4,
sents a wave in the +z (-7) direction and H,(21 x exp 1 - 1 7 - (
represents a wave in the -z (+ q) direction. Here we
want only an outgoing wave as z -- -oo, so we must we find, to first order in a-',
take A = 0 in equation (13).

If we now match a and daldz in solutions (12) and i(! a)
(13) at z = 0, we obtain V - _ ,
B+2Ha a + (....A a and henceI

a+ aJ R . I V I  Q at, a ( -. ( 1)

14
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TABLE I
VALu sS oF THs UPWARD RePIi oN Co enmuNT

a a- -j
a + I IHo/o R.

10 ................. 8.38 x 10-1 6.9 x 10-5 9.42 x 10- 1 1.6 x 10- '
5 ................. 1.68 2.7 x 10-' 1.88 6.3 x 10- 4

1 ................. 8.38 5.0 x 10- 8 9.42 1.1 x I0 - 2
5 x 10"1 ......... 1.68 x 10 1.4 x 10-2 1.88 x 101 3.2 x 10- 2
I x 10"1 ......... 8.38 x 101 8.0 x 10-2 9.42 x 101 1.7 x 10-1
5 x 10 - 2 ......... 1.68 x 102 1.4 x 10-1 1.88 x 102 2.8 x 10-1
1 X 10"3 ......... 8.38 x 10' 3.1 x 10-1 9.42 x 102 5.6 x 10-1
5 x i0 - 3 ......... 1.68 x 10' 4.0 x 10- 1 1.88 x 10, 6.6 x 10 -
1 X 10 -

3 ......... 8.38 x 103 5.8 X 10=1 9.42 x 10 8.3 x 10-1

This expression is accurate to two significant figures in the convection zone, as suggested by Meyer et at.
for a > 5. (1974), then the present model is fairly accurate. In

Table 1 and expression (17) show that the upward order for the Alfvin waves to cool the sunspot, they
reflection from the umbral subphotosphere is very must propagate sufficiently far from the surface layers
weak. For A = 40 km (a = 10w) and a = , equation of the sunspot before their energy is dissipated into
(17) gives R, = 1.58 x 10- s . Of course, we cannot heat and thoroughly mixed to become part of the
put any observational limit on the wavelength of overall radial heat flux in the solar interior. This
Alfvin waves that might be propagating downward process could be limited by scattering and dissipation
into the Sun. But even if these waves had wavelengths of the Alfvin waves due to inhomogeneities in the
comparable to the size of the whole umbra, the density and magnetic field in the subsurface structure
reflection coefficient is still small (R, -0.175 for of the sunspot. Much more work needs to be done to
a = , A = 94.25H0 = 9425 km). fairly evaluate the possibility of cooling by downward-

propagating Alfvdn waves.
v. DISCUSSION It should also be noted that the pure Alfvn waves

The model umbra considered here predicts total considered here are a very special type of wave,
downward reflection and negligible upward reflection involving only horizontal motions. Umbral convection

of Alfv6n waves in a sunspot. The downward reflection may not produce this kind of motion very efficiently,
in the photosphere and chromosphere is so strong that and one should perhaps consider more general mag-

very little wave energy reaches as high as the transition neto-atmospheric waves with vertical motions and
region and corona. Thus, if Alfv6n waves are indeed compression as well. But these more general waves
cooling a sunspot, we conclude that these waves must will no doubt suffer much greater upward reflection
propagate downward into the solar interior. This than the pure Alfvtn waves because of the increasing
same conclusion was reached by Wilson (1975) and sound speed and rapidly changing buoyancy force in
by Beckers and Schneeberger (1977) on the basis of the umbral subphotosphere. This presents an addi-
observations n tional difficulty for the wave-cooling hypothesis.

The very small upward reflection coefficient for
Alfvtn waves in our model umbra indicates that I am indebted to Jacques Beckers, Alfred Clark,
cooling by downward-propagating waves is possible. Jr., and John Molyneux for helpful discussions. Most
However, because of great uncertainties about the of this work was done during a visit at Sacramento
structure of a sunspot below the solar surface, this Peak Observatory. This work was supported by the
result can be considered only as suggestive. If the spot Air Force Geophysics Laboratory under contract
is fairly deep and the magnetic flux rope nearly vertical F19628-77-C-0079.

APPENDIX

Here we present the calculation of the downward reflection coefficient Rt in the case where layer 3 (the corona)
of the model umbra is included. A similar analysis has been given by Hollweg (1972) in a different context. The
solution of the wave equation (2) in layer 3 that represents an outgoing wave as z -- + 0 is

w a = CA(W), (Al)
whe,!!

b exp [~~-(z -zt)12+,]I, b 2,o ~ ,Swhersbexp s- ,'! exp (-z2Ho), (A2)

$ 15
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and H, RT1 Ig is the scale height in layer 3. We have solution (7) in layer 1, solution (9) in layer 2 (with
B * 0), and solution (Al) in layer 3. Matching fi and d*2/dz across z =0 and z =z,, we obtain (after some
algebraic manipulation)

A 2[s11(b) YO(C1) - J4(b) Y1(rw)] (A43)
M + iN

B 2[Jo(b)JCj - sJ1(b)4(C) (M4)M + iN

c 2[ Yo(Cj)J.(C8) - J(C. YAM.) (AS.)M + IN
and

U= M -iN, (A6)
M + JN'

where Ct a exp (- z,12Ho) and

M = fJ0 (b)[J1 (ra) Yo(a) - Yi(C,)Jo(a)] - Sj1(b)[4(C,) Yo(a) - Yo(C)Jo(a)D, (A7)

N = {J0(b)[J1(4) Y1(a) - Y1(rw),1 1(a)I - sJ1(b)(4(Cj)Y1(a) - Y0(C)J1(a)J}. (AS)

Since M and N are real, we have Rd = [U12 = I for all values of the parameters a, b, and Ct.
Considerable simplification of the coefficients A, B, and C is possible for our purposes. If we adopt the values

To - 4500 K, T, 1  0 =IK, Ho =100km, zt = 2000 km, thens-= 3 x 10O6, and it issufficient to take s-*O0in
equations (A3H-A8). The parameter C, is also small as long as a is not too large (C, 5 5.7 x 10- for A 2t 10 kin),
and we can also take Z, -. 0 in equations (A3)-(A8), giving

A- 20 a+J() B = 0 C 2 (A49)
Jo~a)+ U&)J(b)[Jo(a) + U1(a)j

In this limit the solution in layer 2 is the same as that obtained in § III where we ignored layer 3. Also, for
A 2! 10 kin, b :5 0.085 and .(b) -- 1. Thus, the only important effect of including layer 3 for the parameter values
assumed here is to change the length scale in the solution above z = zt.
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Absmt. We study simple thermal models of sunspots based on the concept of partial inhibition of
convection by strong magnetic fields. As in other similar studies (Parker, 1974a. Eschrich and Krause,
1977; Spruit, 1977a), the calculations involve solutions of the heat equation with an appropriate
distribution of thermal conductivity.

The simplicity of the present model allows a detailed study of the dependence of the solution on the spot
parameters, such as the depth of the region in which convection is inhibited. The most important specific
results from the model are: (1) the edge of the umbra is sharp, even for deep spots; (2) deep spots produce
weak bright rings in the surrounding atmosphere, whereas shallow spots produce intense rings which are
difficult to reconcile with observations; (3) only a surface layer of a spot, with thickness of the order of the
temperature scale height, is cool.

The present model, like those of Eschrich and Krause (1977) and Spruit (1977a) yields surface
temperature distributions resembling sunspots. Since the three models all use different descriptions of the
convective heat transport, we conclude that the major predictions of the inhibition theory are relatively
insensitive to model details.

1. Introduction

Many years ago, Biermann (1941) suggested that a sunspot is dark because the strong
magnetic field of the spot suppresses the convection that normally transports the
solar flux. Discussions by Hoyle (1949) and Cowling (1953) called attention
to the possibility that the magnetic field reduces, but does not suppress entirely, the

convective heat flux. Later magnetohydrostatic models of sunspots by Chitre (1963),
Deinzer (1965), Chitre and Shaviv (1967), Yun (1970), Mullan (1973), and Busse
(1973) incorporated this concept in various ways.

Interest in the problem has been revived by Parker's (1974a, b, 1975a, b) vigorous
advocacy of an alternative mechanism, originally suggested by Danielson (1965),
whereby sunspots are cooled by the radiation of Alfv6n waves. A number of recent
papers, in addition to Parker's, have presented calculations bearing on the Alfv6n
wave mechanism (e.g., Roberts, 1976; Boruta, 1977; Thomas, 1978), or the
inhibition of convection. The subject is controversial (Cowling, 1976a, Parker, 1977)
and most authors have dealt with one or the other of the two mechanisms (the present
work is no exception). However, it is worth emphasizing that they are not mutually

exclusive. It may well be that both are important in sunspots. The work reported here
is concerned entirely with the mechanism of inhibition of convection, so, apart from
an occasional comment, we do not discuss further the cooling by Alfvin waves.

The model presented here is related to the models of Parker (1974a), Eschrich and
Krause (1977), and Spruit (1977a). All four models are appropriately called thermal

A
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306 ALFRED CLARK. JR

models, because they involve the calculation of a temperature distribution from
some form of heat transport equation. These models do notdeal with the mechanical
aspects of a sunspot. Thus they provide a necessary but not sufficient test for a
proposed cooling mechanism. The additional constraints imposed by mechanical
equilibrium may rule out mechanisms which are allowed by thermal models.
Nevertheless, the models are very useful in studying the thermal balance of a
sunspot.

The four thermal models under present discussion are all based on the assumption
that the turbulent convective heat transport can be modeled by some kind of
conductive law. There is no unique, or even generally accepted way to do this, and, in
fact, such an assumption is, with present knowledge, unverifiable. Because of this,
one must accept at the outset the impossibility of absolutely verifying or rejecting the
inhibition concept on the basis of thermal models. The proper objective is much
more modest: namely, an attempt to assess plausibility. If a number of different ways
of describing the turbulent convective heat transport lead to models which look like
sunspots, then the magnetic inhibition concept becomes more plausible. If, on the
other hand, only very special circumstances can yield a model resembling a spot, then
some doubt is cast on the role of magnetic inhibition.

Consider now in more detail the nature of the four thermal models. In each case,
one solves the steady-state heat equation in a half-space, with the heat flux
asymptotically equal to the solar flux deep below the surface, and with an appropriate
boundary condition (usually the Stefan-Boltzmann law) on the upper surface. The
success of the model is then determined by comparing the calculated distribution of
surface temperature with temperature distributions observed in sunspots. In con-
structing a model, there are three major choices: (i) the geometry of the region of
strong magnetic field where the convective heat transport is affected (for brevity, we
will call this region the spot in what follows); (ii) the form of the conductive law
outside the spot; (iii) the alteration of the conductive law within the spot. We now
summarize briefly how these three choices were made in the four models under

discussion.
Eschrich and Krause (1977) chose a right circular cylinder for the spot shape.

Outside of the spot, they used a Fourier law for the heat flux with an isotropic,
constant conductivity. Within the spot they used a constant anisotropic conductivity,

with the vertical conductivity (along the magnetic field) being considerably less than
the horizontal conductivity.

Spruit (1977a) also used a cylindrical spot geometry. He used a more complicated
description of the heat transport, based on mixing length theory. His conductivity
was both depth-dependent and anisotropic. Outside the spot, the anisotropy was
small. Inside the spot, Spruit took a vanishing horizontal conductivity. Thus although
Eschrich and Krause (1977) and Spruit (1977a) agree that the convective transport is
anisotropic, they do not agree on the sense of the anisotropy. As we discussed earlier,
this kind of ambiguity is inherent in any attempt to model turbulent convective
transport.

18
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THERMAL MODELS OF SUNSPOTS 307

The present work fits into the catalog of models between the two works discussed
above, since an isotropic conductivity is used both inside and outside the spot. In this
respect, our model is like Parker's (1974a). Parker carried out calculations only for
very shallow spots, however, whereas the present work has been done for a full range
of aspect ratios.

In addition to filling a gap in a catalog, the work presented here has a second
objective: to develop the simplest possible model of the inhibition concept. In the
absence of an accurate theory of convective heat transport, one can make a strong
case for simplicity. The principal advantage of a simple model is that it allows a
thorough discussion of the dependence of the solution on the basic spot parameters.

The mathematical formulation for the present model is given in Section 2. In
Section 3 some two-dimensional models are analyzed in detail. The analysis leads to
some simple asymptotic approximations which are used to advantage in the dis-
cussion of three-dimensional models (Section 4). The reader not interested in
mathematical details is invited to skip to Section 5, where conclusions from this work
and other thermal models are discussed. In order to make Section 5 reasonably

complete, the discussions of the solution, which would normally be scattered through
Sections 2, 3, and 4, are deferred until Section 5.

2. Formulation

The geometry of the model is shown in Figure 1. We assume that the heat flux Q and
the superadiabatic temperature gradient are linearly related. The thermal conduc-
tivity is assumed isotropic, with a reduced value in the volume V, where the
inhibition is effective. Thus we take

Q=J-K(VT-/n) in V2  (1)

Q=-K(1-e)(VT-Ik) in V1 ,

/--s X s2

V2

V2

Fig. 1. Model geometry. The volume V, is the region of low thermal conductivity, and V2 is the region of
high conductivity, with S the interface between them. The gas radiates into the half-space z < 0 from the

*surface z = 0, which is divided into S, (bounding VI) and S2 (bounding V2). The heat flux is asymptotically
equal to F, as z - +oo.
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where T is the temperature, r is the adiabatic gradient (assumed constant), k is a unit
vector in the z -direction, K is the thermal conductivity outside the spot, and e is the
fractional reduction in conductivity within the spot. Both K and e are taken to be
spatially constant. The steady-state heat equation is V. Q = 0, and this becomes

V2T=O in V, and V 2 . (2)

The temperature and the normal component of heat flux must be continuous at the
interface S and V , and V2. Thus

[Tiff0

and

*" (VT-"k)12 =(1-e)n.(VT-k)i on S. (3)

At the upper surface, the gas radiates according to the Stefan-Boltzmann law, so we
have

KO -E)(a TF) O'T4 on S,

and

K( r) = T4 on S2 , (4)o z /

where o, is the Stefan-Boltzmann constant. The final condition is the asymptotic one
far beneath the spot, where the heat flux must approach the solar flux FO. Thus

aT r+ F . (5)

az + K

(Here our approach differs from that of Eschrich and Krause (1977), whose imposed
exact flux uniformity at the base of their cylindrical volume Vt.)

In the absence of a spot (e = 0) the temperature gradient is constant, and the flux
and surface temperature Tso are related by

F® = orTSo. (6)

The temperature distribution is then

To(z) = Tso( + z/h), (7)

where
h=id)'= r + T3s0\ - 8)dz so (8)

is the temperature scale height at the surface. Another important scale, the
superadiabatic temperature scale height at the surface, is defined by

H =(dT/dz -KF)1H \ _0-o= - so (9)

20
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Returning to the general case, we introduce Tso as a temperature scale and L as a
length scale (to be chosen later, but always of the order of the spot diameter). Also,
we separate out the behavior of T at z = o. Thus we introduce

1 = L-z, 't=LV,

and a new dependent variable 0, defined by

T=Tso I+L +T@), (10)

where

A= (4L/H) (11)

is of the order of twice the spot diameter divided by the superadiabatic temperature
scale height. With this scaling, the problem becomes:

020=0 in V, and V2 , (12)

0-0 as !-+o0, (13)

[012 = 0 on S, (14)

and

n.t0I 2=(1-E)n.V0I,-n-k on S. (15)

The upper surface boundary condition is now given by

(1 + Ae/4)'-1+e o

(16)

Tz (1 + Ae-V/4) 4 - 1
on S 2 .

Because of the boundary condition (16), the problem is nonlinear. The solution

would require elaborate numerical work, which can hardly be justified in view of the
other limitations of the model. Thus we linearize the problem, based on the
assumption of small E. This restricts our ability to make quantitative statements
about temperature amplitudes, but we can still have some confidence in the spatial
scales emerging from the calculation. In Section 5, we discuss a crude but not
unreasonable way to restore some of the nonlinearity omitted from the calculations.
(Some comments on other models are in order here. Parker (1974a) also linearized

the radiation condition. In his case, the small parameter was the ratio of the spot
depth to the temperature scale height. In the present work, we have preferred to take
the conductivity contrast e to be small, since we wish to study deep spots. Eschrich
and Krause (1977) also linearized the radiation condition. From the point of view of
mathematical consistency, their linearization cannot be justified, since neither the
spot depth nor the conductivity contrast is small in their calculations. However, as

A 21
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they point out, the error associated with their linearization is probably less than
25%.)

The linearization is carried out by expanding 0 in powers of e and keeping only
the first term in the expansion. The result is:

020=0 in V, and V2 , (17)

0-0 as i-.0, (18)

[0]2 =0, . a. [,0.0]2=_n.k on S, (19)
and

__ on S ,

z- 1= 0 on S 2 .

In this formulation, it becomes clear that the character of the solution depends only
on the shape of the spot and the parameter A. As we shall see later, the case of interest
isA >>1.

Although the problem defined by (17)-(20) is linear, it is made somewhat difficult
by the jump conditions on the internal interface S. The basic technique we use is first
to find a harmonic function X which satisfies the jump condition (19) and the
condition (18) at 0o, but not, in general, the surface boundary condition (20). Thus we
let X be a function which satisfies

t
2
) x=O in V, and V2 . X -p0, (21)

[XI=0, 1[ X2 =-n.k on S. (22)

To make X unique, we also specify that

X=O on S+$2. (23)

Once we have found such a X, we define a new dependent variable 1' by

) = r + W'. (24)

Then Wk is a solution of the following boundary value problem:

'IP=0 in V1+ V2, (25)

1,-*0 as i-*o, (26)
and

d--AV'=f on f=0, (27)

where

-L+1 on S,
= z (28)

- on S2.ax
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The problem (25)-(28) involves no internal interfaces and is an ordinary half-space
problem which can be solved by the Fourier transform. Thus we can deal with any
spot geometry for which a 'jump' function X can be found. As we shall see, this is
easily done for elliptical spots in the two-dimensional case, and both prolate and
oblate spheroidal spots in the three-dimensional case.

3. Two-Dimensional Models

3.1. SOLUTION OF HALF-SPACE PROBLEM

In this section, we solve the problem (25)-(28) for VI(x, z), where x is the
horizontal coordinate. We choose the length scale L so that the spot volume V,
intersects the surface z = 0 along - 1 : x !5 1. The dimensional spot width is then 2L.
The problem is easily solved by a Fourier transform. With the aid of the convolution
theorem, one can put the solution in the form

I(x, z) = J G(x-x', z)f(x')dx', (29)

where
oo

G(x, z)= I k+A dk. (30)
-wo

It is easy to show (with the formulas in Chapter 5 of Abramowitz and Stegun, 1964)
that the kernel G(x, z) can be expressed in terms of an exponential integral E,:

ef

G~xz) =-Re Ei~) 1(31)

*where

=A(z +ix), (32)

and

E(f)= t dt. (33)

An important special case is G(x, 0), which is needed in the calculation of the surface
temperature. By starting from (30) with z = 0, one can show that

G(x, 0)= _1 g(AIxI), (34)

where g is an auxiliary function of the exponential integrals, defined by (Abramowitz

23
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and Stegun, 1964; p. 232)

g(u)=-cos(u)Ci(u)-sin(u)si(u), (35)

where

Ci(u) = 8 +In(u)+ Cos t- I dt (36)i r

0

and
U

si(u) = - + sin tdt (37)

0

where 8 =0.577 215 6649 is Euler's constant. For small u, the most useful
representation of g is obtained from the expansions

Ci(u)=8+ln(u)+ Y (38)
,- 2n(2n)!

and
V1 oo (-1)"u

2" !

si(u)= -2 + Y2n- 2n 1! (39)

For 1 s u < o, the most useful representation is the rational approximation (Has-
tings, 1955)

+ 6+ 4+ 2

g() [' alu' a214 a3U2 +a4" + (, (40
U7 (40)

where

a, =42.242855, b, =48.196 927,

a2 = 302.757 865, b2 = 482.485 984,
(41)

a3 = 352.018 498, b3 = 1114.978 885,

a4 = 21.821899, b 4 = 449.690 326,

with le()1 < 3 x 10 - 7 for 1 - u <00.

The parameter A = 4L/H is important in the solution, so we digress briefly to
discuss typical values. From the model of the convection zone given by Spruit
(1977b), we estimate that H -500km at r = 1. The diameter of the region of
inhibition of convection in our model is 2L, and it is logical to identify this with a
typical umbral diameter - say 2L - 20 000 km. This gives A -80. There are
uncertainties. In particular, H may well be different in other convection zone
models, since it is determined by the superadiabatic gradient in the uppermost layers
of the convection zone - a particularly difficult quantity to predict. Observed umbral
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diameters vary widely, so L is also uncertain. In spite of the uncertainties, it is clear

that A is large, and that is all that is necessary for the calculations here. When a

numerical value is required, we have taken A = 100 for purposes of illustration.
It is worth noting that

1 J g(lu)du=l, (42)

a result that is most easily proved from the Fourier transform of G(x, 0). Thus for

large A, we expect

lira A g(, Ix - xI) = -5(X -X') (43)
A-V

The formulas given here reduce the problem for 1 to quadrature. To go further,

we must choose a geometry for the spot and find the corresponding jump function X.

3.2. ELLIPTICAL SPOTS

We seek a function V (x, z) satisfying (21)-(23), when the interface S is given by

x
2 + (z/D)2 =1 , (44)

where D is the aspect ratio of the spot. The determination of a suitable X is
straightforward, although tedious, and can be carried out with the aid of formulas for

the solution of Laplace's equation in elliptic coordinates (Morse and Feshbach, 1953,

p. 1195-1200). We skip the lengthy derivation, and only quote the results. We begin

with shallow spots (D < 1). We have

f z/(D+1) in V(
x(x, z)=l[D/(l_-D2)l/ 2]e - sin0 in V2 , (45)

where

m =cosh-{[(x+
{1 - D 21l/2

)2 + 2]1/2 
+ [(X - I -D21/2)2 + Z 21/2

m = csh-12{1 -D2}V/2

(46)

with n -0, and where

= [(x + (I -D 2) 2)2 + z 2]11 2_ [(x -{1- 2}1/2)2 + z 2]1/2 (
e =COS-I{[(X 2{1 -D 2}1/ 2  (47)

with 0 5 0s ir. The inversion of (46) and (47) is also useful:

x = ( -D 2 )112 cosh m cos 0,
/(48)

z =(|-D 2) 2 sinh m sine.

25

g •



314 ALFRED CLARK, JR

For deep spots (D > 1) we have

x(x, z) =z(D+1) in V, (49)

, [D/(D 2 _ 1)/2]e_ cos . in V2,

where

= osh[(z +{D
2

- 1}1/2)2 +x 2 ) / 2 +[(z -{D 2
- 11/2)2 +X 2 (/2 )

coh- 21D 2"
_ 11171- -

(50)

with 4 0, and

-{ t1(z + I i 2  _ 11112)2 + X 21 _11 '2 _ _ [(Z -I 2 _ 11112)2 + X 21,/ 5
Cos- 111 1

2
- + (51)

with - ir/2s 4' s ir/ 2 . The transformation inverse to (50) and (51) is

x = (D 2 - 1)/2 sinh A sin 4', (52)
z =(D 2 - 1)1/2 cosh A cos 4.

For semi-circular spots (D = 1), we have

2Z in V,

X(xz)= z (53)
2X +

1 in V 2 .

The boundary function f(x), needed in the calculation of IJ(x, z), is defined by

(28). For D # 1, f is given by

D+1 for JxJ<l

fx) = D ( (54)
-r -S 'I ( [ D - 1 + X 1 ]1 / 2 - f o,

For a semi-circular spot (D = 1), we have
12 for Jxl<1(

A~X) = 1 (55)
-p for Ix1>1.

With X(x, z) and f(x) known, we can now compute the surface temperature.

3.3. SURFACE TEMPERATURE

We will show that for large A, a very simple approximation gives useful information.
This approximation proves invaluable in the analysis of three-dimensional spots in
Section 4. In addition, our calculations will elucidatq the nature of the umbral
boundary, whose sharpness has been the object of much discussion in the literature.
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We begin with the exact expression for Yf(x, 0), obtained from (29) and (34):

V(x 0)=- g(A Ix -x'I)f(x') dx'. (56)
-o

The fact that A is large suggests that we use the delta-function approximation (43) for
g. This yields

A W'(x, 0) -f(x). (57)

This result is also strongly suggested by the boundary condition (27). The approxi-
mation (57) is very attractive, since f(x) is known in closed form. However, it cannot
be uniformly valid in x, since f(x) is discontinuous at x- ± 1, whereas P(x, 0) is
continuous. This is the classic signal of a singular perturbation problem, and we must
use stretched coordinates in the vicinity of x = ± 1 in order to remedy the defects in
(57) (see, e.g., Van Dyke, 1975, for a general discussion). Since 'I(x, 0) is even in x,
we need consider only x = 1. There, as one can show, the proper stretched coordinate
is

A (X - 1). (58)

We introduce this and n' = A (x' - 1) in (56). We then take the limit A - 0 at fixed 11.
After some elementary manipulations in which we make use of (42), we can put the
result in the form

lim AWJ(x, 0)=l(i7) = j~(f- + (') - sgn(i?) [g(u) du, (59)
n fixed 0

where f., =f(1±) are the right and left limits of f at x = 1. The inner solution 12(q)
blends smoothly with the outer solution A V'(x, 0), since

lir n(II)--f, (60)

a result easily established from (42) and (59). The smooth variation of A ' across the
umbral boundary is given by (59). We see that A ' varies from f. to f. for 4i - 1.
Thus from (58) we conclude that the thickness of this transition region is of the order
of A - , where A is given by (11). Thus the horizontal width of the region of rapidly
changing temperature near the umbral boundary is of the order of the superadiabatic
temperature scale height.

For computational purposes, it is highly desirable to blend (57) and (59) into a
uniformly valid approximation (again see Van Dyke, 1975, for a general discussion).
This is easily done and the result is

A V- -Ax)+12(1)+f_, n<0 (1-f(x)+2()+f+' - (61)
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We now have three representations for qI(x, 0): the simplest approximation (57),

the more complete approximation (61), and the exact representation (56). From

their derivation, we know that (57) and (61) are asymptotically valid for large A.

However, only by computation and comparison with the exact solution (56) can we

determine whether the approximations are numerically useful for A values of interest

(A - 100). For this reason we have carried out a detailed numerical comparison of

(56), (57), and (61). The numerical integration of (56) involves four difficulties: (i) the

infinite range of integration; (ii) the large parameter A, requiring a fine grid; (iii) the

logarithmic singularity of g at x = x'; (iv) the discontinuities in f at x = ± 1. A detailed
description of the numerical scheme actually used would take many pages. Since

there are no major new features in the scheme, we forgo the description.
The relation between the surface temperature Ts(x) and 'I(x, 0) is easily obtained

from Equations (10), (23), and (24):

Ts(x)- Tso T() A I(x, 0) (62)

ETso 4

Here ATs(x) is the fractional change in surface temperature per unit fractional

TABLE I
The change in surface temperature A Ts(x) for A = 100 and D = 5

Values of ATs(x)

Exact, Approximate, Approximate.

X based on (56) based on (61) based on (57)

0.0 -0.2079 -0.2075 -0.2083
0.2 -0.2078 -0.2073 -0.2083
0.4 -0.2076 -0.2070 -0.2083
0.6 -0.2070 -0.2063 -0.2083
0.8 -0.2051 -0.2044 -0.2083
1.0 -0.0836 -0.0833 undefined
1.2 0.0362 0.0357 0.0397
1.4 0.0362 0.0358 0.0378
1.6 0.0350 0.0346 0.0359
1.8 0.0335 0.0331 0.0341
2.0 0.0320 0,0316 0.0324
2.2 0.0304 0.0301 0.0307
2.4 0.0289 0.0286 0.0292
2.6 0.0275 0.0272 0.0277
2.8 0.0261 0.0258 0.0262
3.0 0.0248 0.0245 0.0249
3.2 0.0235 0.0232 0.0236
3.4 0.0223 0.0221 0.0224
3.6 0.0212 0.0209 0.0212
3.8 0.0201 0.0199 0.0202
4.0 0.0191 0.0189 0.0191
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TABLE I1

The change in surface temperature ATs(x) for x near 1, and for A 100 and D = 5

Values of ATs(x)

Exact, Approximate, Approximate,
X based on (56) based on (61) based on (57)

0.70 -0.2064 -0.2057 -0.2083
0.80 -0.2051 -0.2044 -0.2083
0.85 -0.2038 -0.2031 -0.2083
0.90 -0.2013 -0.2005 -0.2083
0.91 -0.2004 -0.1997 -0.2083
0.92 -0.1994 -0.1987 -0.2083
0.93 -0.1981 -0.1974 -0.2083
0.94 -0.1964 -0.1957 -0.2083
0.95 -0.1941 -0.1934 -0.2083
0.96 -0.1909 -0.1901 -0.2083
0.97 -0.1859 -0.1851 -0.2083
0.98 -0.1774 -0.1766 -0.2083
0.99 -0.1597 -0.1589 -0.2083
1.00 -0.0836 -0.0833 undefined
1.01 -0.0075 -0.0079 0.0416
1.02 0.0101 0.0097 0.0415
1.03 0.0185 0.0181 0.0414
1.04 0.0234 0.0230 0.0413
1.05 0.0266 0.0262 0.0412
1.06 0.0288 0.0284 0.0411
1.07 0.0304 0.0300 0.0410
1.08 0.0316 0.0312 0.0409
1.09 0.0326 0.0321 0.0408
1.10 0.0333 0.0329 0.0407
1.15 0.0354 0.0349 0.0402
1.20 0.0362 0.0357 0.0397
1.30 0.0365 0.0361 0.0387

change in thermal conductivity. Tables I and II give a numerical comparison of the
two approximations and the exact solution for the parameter values A = 100 and
D = 5. It can be seen that the uniformly valid approximation (61) is in excellent
agreement with the exact solution. Even the simple approximation (57) is very good
except in the immediate vicinity of x = 1. Calculations for other parameter values
(A = 50 and 100; D = 0.5, 1.0, 2.0, 5.0, and 10.0) give similar results. Outside of the
thermal tradsition region of the umbral boundary, the simple approximation (57) is
quite adequate. We will take advantage of this in our discussion of three-dimensional
spots in Section 4.

Because the sharp umbral edge is of some interest, the solution near x = 1 (both
exact and approximate) is shown in Figure 2, again for the parameter values A = 100,
D = 5. As predicted by the asymptotic theory, the width of the region of sharp
temperature change is of the order of A
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Fig. 2. Surface temperature distribution in the vicinity of the umbral edge Ux 1 ). The center of the
umbra is at xr = 0. The aspect ratio of the spot is D = S. The value of A is 100, corresponding to a spot
diameter of 50 times the superadiabatic temperature scale height. The solid line is the exact solution (56)
and the uniformly valid approximation (61), which are indistinguishable on this scale. The dashed line is

the simple approximation (57).

3.4. VARIATION OF TEMPERATURE WITH DEPTH

Although the surface temperature distribution is the principal observable quantity,
the distribution of temperature below the visible surface is also of interest. In this
section, we obtain some important qualitative results about the depth dependence of
the temperature.

The starting point is Equation (10) for the temperature, Equation (24) for ',

Equations (29)-(33) for WI, and Equations (45)-(55) for X(x, z) and f(x). The
unperturbed temperature To(z) is given by (7). A useful measure of the temperature
distribution is A T(x, z), defined to be the fractional change in temperature per unit
fractional change in conductivity:

A T(x, z) =T(x~z)-To(z) A(X+'') (3
e TO(z) 4(1 +Az) 63

For z = 0, this reduces to J4Ts(x) = A V'(x, 0)/4, discussed in the previous section.
Away from the surface, however, the term X' dominates. To show this, we use the
expression (3 1) for 0, and observe that, fork A>> 1, and Az >> 1, the complex argument
j= A[z + i(x -x')) is always large. Then we can use an asymptotic expansion for

E,(e) (Abramowitz and Stegun, 1964; p. 231) to write

a-- e + :4 +(64)
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Substitution of this into Equation (29) for IP yields

z X f(x') dx'
VAxz)-. f _X-)---!+O(A) for Az>1. (65)

Thus Y, is small of order A -' provided Az >> 1. Since X is of order one with respect to

A, we conclude that

AT(x,z)=-K for Az>>l. (66)
4z

Since X > 0 for z > 0, we get the important conclusion that the temperature pertur-

bation is positive away from the upper boundary. Since IP is O(A -') even on z = 0, we
have YI = O(A -') everywhere, and X will dominate except where X = 0. It is easy to
show that X ! O(A -') only for Az <- 1. Thus the cooling of a spot is purely a surface
phenomenon; only within one or two superadiabatic temperature scale heights of the
visible surfacc is the spot cooler than the normal atmosphere. The remainder of the
interior of the spot is hotter than the normal atmosphere. A more quantitative
discussion of this effect is given in Section 5.2 for three-dimensional spots.

4. Three-Dimenional Spots

We choose half spheroids for the geometry since they are sufficiently simple to allow
an analytical solution, but sufficiently general to include deep and shallow spots. We

choose our basic length scale L to be the radius of the horizontal circular section of
the spheroid. The equation of the interface S is then

2

x 2 +y 2 + (67)

The discussion in Section 3 shows that all essential information can be obtained
from the jump function X by means of simple approximations. Thus we limit our
calculations to the determination of X. As in the two-dimensional case, the cal-
culation is lengthy but straightforward. The necessary formulas are given by Morse

and Feshbach (1953, pp. 1284-1294). As before, we skip the derivation and only
quote the results. We begin with deep spots (prolate spheroids; D > 1). Then X is
most conveniently expressed in terms of

e r.z)={[z + (D - 1)' 212 +r2 } 2 + {[z -(D 2 - 1)( 2D 2 + r} 2

f, 2(D 2 - 1)1/2 , (68)

r where r = (x2 + y2)1/2 is the cylindrical radial coordinate. The interface S is given by

= = (D2  (69)

I.
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and the spot volume V, corresponds to I < < Co. with the exterior V2 being
CO: j < 0. Then x(r, z) is given by

( Dz rM [2 O+L1 \ i V
j,.I (D2-1)3 //2 2? n, -'-J-o in Ul

x ]z + 1 (70)
((D_ ) 12t In( -? in V2. .

The boundary function f (defined by (28)) is

f(r) D 1 
2 +  f for r<1 (71)

(D -) /2[
' In ( - - ) -  for r>1,

where now
/ 

2  
\1/2

= C(r, 0) = (1 +B 1) - (72)

Consider now shallow spots (oblate spheroids; D < 1). The solution is most
conveniently expressed in terms of

[r2 +z
2 -1 +D

2 +{( 2 
+ z

2 
- I +D 2

)
2 +4(1 -D 2

)z
2
}I/

2
](

/ 2

P= [2(1 -D2W /2  (73)

The interface S is given by

D
P - Po (1 -D 2) 1 / 2 ' (74)

and the spot volume V, corresponds to 0-<p-<po, with the exterior V 2 being
pop<oo. Then X (r, z) is given by

( Dz r 1 _ 1\
(1-Dz)3/IL- tan -'( in V(

X= Dz _p. \' (75)(1,- 2)3/4[- tan t) in V2.
Then the boundary function f is

D l I

I- (I-D 2)3/2 -tan ) for r<1

Di(r) P 1O (76)
-_D )"[p-tan-(p)] for r>l,

where now
r r
2  1/2

p =p(r, 0) = -- 1) . (77)
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The special case of spherical spots (D = 1) can also be treated. One gets

i z in  V ,

X(rZ)= z (78)

and the boundary function f is

3 , r<1
1(r) (79)- 'r>l.

Consider now the surface temperature. We use the approximation (57) and the
definition (62) to get

ATs(r) = Ts(r)-Tso AI(rO) _(r) (80)
eTs0 4 4

In this approximation, we do not resolve the sharp but smooth transition at the
umbral boundary, but we do get good estimates of (i) the umbral temperature, (ii) the
maximum temperature in the brigeh ring, and (iii) the horizontal scale for the fall-off
of the temperature in the bright ring as we move away from the spot. In addition, this
approximation satisfies the global conservation of energy. Let AF
4aoTso (Ts - Tso) be the (linearized) perturbation in the radiative flux at the free
surface. Then the fractional flux perturbation is

A F 4 (T s - T s o ) = E f r ) - - f .( 1
S0t = T (81) .

Conservation of energy requires that the integral over S1 + S 2 of AF vanish. It is
straightforward to show this, by using the definition (28) for f, the jump conditions
(22) for X, the Equation (21) for X, and the divergence theorem.

Finally, it is worth noting that within the framework of the large A approximation

used here, the character of the solution depends only on the aspect ratio D.

S. Discussion

The discussions based on the calculations of Sections 2, 3, and 4 all have been
deferred to this section, in order to present them in a coherent and unified way.
Specific points of interest are discussed in Sections 5.1 (the sharpness of the umbral
boundary), 5.2 (the internal temperature of spots), 5.3 (bright rings and penumbrae),
and 5.4 (spot depth). Concluding remarks and a summary are presented in 5.5.

5.1. THE SHARPNESS OF THE UMBRAL BOUNDARY

Several authors (e.g., Cowling, 1953; Parker, 1974a) have suggested that the
observed sharp umbral boundary is inconsistent with models based on the diffusion
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equation, unless the depth of the region of thermal inhibition is very small. However,
very shallow spots, in the inhibition theory, produce intense bright rings (Parker,
1974a) and are therefore inconsistent with observation (see Section 5.4 below for
further discussion of spot depth). Cowling (1976a, b) has suggested that it is not
necessary for the depth to be small, provided that the horizontal thermal conductivity
in the region of strong field is greatly reduced. Even this constraint is not necessary,
as the present model shows. Of course the horizontal conductivity in the spot may be
small. The point is that the sharp umbral boundary does not require it. In fact, it is
difficult not to get a sharp umbral boundary out of thermal models - the models of
Eschrich and Krause (1977), Spruit (1977a) and the present work all show sharp
umbral boundaries. We agree completely with Spruit (1977a) who says: "To
maintain a sharp transition in temperature, a sharply bounded and strong inhomo-
geneity in the diffusion coefficient is sufficient." We would add to this that the
conductivity inhomogeneity must be present at the visible surface, since it is really
the combination of the inhomogeneity, the radiative boundary condition, and the
small superadiabatic temperature scale height (compared to the spot size) which
gives the sharp umbral boundary.

Neither Spruit nor Eschrich and Krause identify the thickness of the umbral
temperature transition in terms of other scales. As our analysis in Section 3.3 shows,
this horizontal transition region has a thickness equal to the superadiabatic tempera-
ture scale height at the surface (defined by (9)), provided that the spot dimensions
greatly exceed this scale.

It should be emphasized that, even though thermal models predict the sharp
umbral boundary, they do not explain it. What they show is that if there is a sharp
change in the thermal conductivity, then there will be a sharp change in temperature
at the visible surface. In the inhibition theory, a sharp change in thermal conductivity
is caused by a sharp change in magnetic field strength. Interestingly enough, the
theory of cooling by Alfv~n waves, as developed by Parker (1974b), also requires a
sharp change in magnetic field strength to get a sharp change in temperature. Thus
while both theories can accommodate a sharp umbral boundary, there remains
the fundamental question of why the magnetic flux tube of the spot has a sharp
boundary.

5.2. THE INTERNAL TEMPERATURE OF SUNSPOTS

As Parker (I 974a) has shown for shallow spots, and as the present work (Section 3.4,
Section 4) shows for both deep and shallow spots, the subsurface interior of a spot is
hotter than the normal atmosphere at the same level. In fact, in a thermal model of a
spot, the cool region extends downward only a distance of the order of the
superadiabatic temperature scale height. It is of interest that considerations of
mechanical equilibrium also suggest that sunspot cooling is cohfined to the surface
layers (Weiss, 1964, 1969).

Consider now an estimate of the magnitude of this subsurface heating. We begin
with the formula (10), from which we compute the dimensional vertical temperature
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gradient in the spot volume (V):

-+ = + (82)
dzlv H \ zl

At distances of several superadiabatic temperature scale heights or more below the
visible surface, 0 -V (as discussed in Section 3.4). For the spheroidal spots of

Section 4, the gradient in V is constant, and we have

(lD21C tan for D<1

-Z 3 for D=1 (83)

D C C I\

(D 2 1)3/2[2 ( LC 4_1 - for D> 1

where

D
C 

= 
D2 _ 112 (84)

Here the spot volume V, is one-half of a spheroid, and D is the ratio of the depth to
the radius of the spheroid. To complete the estimate, we need a value of e. We can
relate e to the umbral temperature T.. From (10) evaluated at z =0, with the
approximation (57) for Y' and the definition (28) for f, we get

I= Tso[I-(1-VI)]. (85)

We may solve (85) for e. Then by substitution into (82) we get

dIV -( +a), (86)

where

a =4(1.-ToTso)( ) (87)

Then a is the fractional excess temperature gradient in the spot. For illustrative
purposes, we choose Tu = 4000 K and Tso = 5800 K, and then calculate a as a
function of the spot aspect ratio D. Some typical values of a(D) are a(0.5) = 1.384,
a(1.0) = 0.621, a(2.0)= 0.261, and a(5.0)= 0.073. The numbers cannot be taken
too seriously since the value of e implied by (85) is not small, in violation of the
mathematical basis of the calculation. Nevertheless the numbers suggest that the
effect may be particularly significant for shallow spots. Since neither Spruit (1977a)
nor Eschrich and Krause (1977) discuss the temperature variation beneath the
surface, it is not known to what extent the present results are model-dependent.
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Elementary physical reasoning about heat flow around obstacles suggests strongly
that some subsurface temperature excess in the spot region is inevitable. With a
conductivity which increases rapidly with depth, such as that used by Spruit (1977a)
the excess temperature may be smaller than estimated here.

In the traditional version of the inhibition theory, one has usually assumed that the
coolness of the spot extends over the spatial region in which inhibition is important.
A very attractive feature of that assumption is that it leads to a mechanism for field
concentration, first suggested by Parker (1955). In simplest terms, the mechanism is
the following: increasing the field strength gives greater inhibition of convection,
causing the spot to become cooler. As the spot cools, its pressure drops, and it must
contract to preserve mechanical equilibrium. The contraction increases the field
strength further, and the process continues until some kind of equilibrium is reached.
(See Galloway et al. (1977) for a recent discussion of this and other field-concen-
tration mechanisms.) As Parker (1974a, 1976) has emphasized, and as the present
work shows, this mechanism cannot work in the inhibition theory, because the spot
region is not cooled (except very near the visible surface) but is heated by the
inhibition process. Parker (1974a) concludes that the heating would in fact disperse
the field, and that this is a major objection to the inhibition theory. In the absence of a
quantitative theory of spot formation, it is difficult to draw such a definite conclusion.
We prefer the following more conservative conclusion: If the inhibition theory with
increased subsurface temperatures is correct, then mechanical equilibrium (internal
gas pressure plus magnetic pressure equals external gas pressure) requires that at any
given level the spot have a lower density than the surrounding atmosphere. Thus
some material must be expelled from a flux tube during the concentration phase of its
history. Alternatively, as suggested by Meyer et al. (1974), the mechanical balance
may be partially dynamic if there are significant large scale flows outside the flux
tube. In any case, the above values of a suggest that the mechanical balance problem
is more severe for shallow spots than deep ones.

A digression on cooling by Alfv6n waves is useful here. In that theory, it is
perfectly possible for the cooling to extend over a sizable volume, rather than being a
surface effect as in the inhibition theory. Such a volume cooling would make sunspot
formation much easier to understand. Cowling (1976a; see also Parker, 1977) has
argued, on general thermodynamic grounds, that it is very difficult to transform all of
the missing hcat flux into Alfv6n waves. However, that may not be necessary. As the
calculations of this section show, deep spots, in the inhibition theory, have only
slightly warm interiors. It is possible that a modest flux of Alfven wave energy, in
combination with the inhibition of convection, can produce a deep spot with a
substantial cool volume. Such hybrid theories, as exemplified by the work of Mullan
(1974), deserve more attention than they have received.

5.3. BRIGHT RINGS AND PENUMBRAE

A point of primary interest in any sunspot theory is the disposition of the 'missing
flux'. As many authors have pointed out, the inhibition theory requires a bright ring
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around a spot, in which the diverted heat flux is radiated from the visible surface. The
amplitude and scale of this bright ring are of great interest, since they are, in
principle, observable. In this section, we will summarize the predictions of the
present model, and compare them with those of Parker (1974a), Eschrich and
Krause (1977), and Spruit (1977a). As we shall see, the comparison with observation
is complex and inconclusive.

We begin with a discussion of the spatial scale of the bright ring. In calculating the
surface temperature, we use the large A approximation (57). Then we get from (10),
with z = 0,

Ts(r) = Tso1 -4E f(r), (88)

where f(r) is given by (71) for deep spots, by (75) for shallow spots, and by (79) for
hemispherical spots. Figure 3 shows a plot of the normalized excess temperature in
the bright ring,

ATR(r) = Ts(r) - Ts, (89)
TS(1)- Tso'

as a function of r, for D = 0.2, 1.0, and 5.0. For large r, ATR falls off like 1r 3 . The
width of the region in which A TR is appreciable increases with increasing spot depth.
A more precise statement can be made by computing the radius r, at which
ATR(r.) = 0.1. The results, given in Table III, show that

r I -1 D (90)

for a wide range of values of D. Thus the width of the bright ring is comparable with the
depth of the spot.

IO
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ATRlr )  -Dx50
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j ~02 D0

00
10 20 30 40 50

Fig. 3. Temperature excess .1 T as a function of radius r in bright ring, normalized to unity at the umbral
boundary (r = 1). The three curves are for a shallow spot (D = 0.2), a hemi-spherical spot (D = 1.0), and a

deep spot (D =5.0).
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TABLE III

The width r. of the bright ring as a function of
spot aspect ratio D

D (r. - I)/D D (r. - 1)/D

0.2 1.28 1.5 1.10

0.4 1.26 2.0 1.05

0.6 1.22 3.0 0.99
0.8 1.18 4.0 0.95

1.0 1.15 5.0 0.92

Consider now the amplitude of the bright ring. Here, unfortunately, the linear
theory breaks down. One cannot produce an umbral temperature of 4000 K with a
small E. In order to discuss amplitudes, we use the length-scale information obtained
above from the linear theory, and we use a simple model which incorporates the
correct nonlinear radiative boundary condition on z = 0. We do this by assuming a
functional form for Ts(r). The peak temperature excess in the bright ring, AT, =
3Tso, is left as a free parameter, to be determined by the global energy balance. Thus

we assume

tSr) Tu., r <I (1
Ts, r> I I +((r1))3 3 (

We choose w so that the temperature excess has dropped to 0.1 AT, for r = 1 + D (in
accordance with (90)). This gives

w = D/9" 3 . (92)

We impose the global energy balance:
R

lir {o-rTVU+orJ 2Tsrdr-o'rTsoR =0. (93)

The substitution of (91) into (93) yields

I (_L_ =2#w(4It +6,612 +4 1321,+'33j.) +

+ 2Pw2(4J, + 613J2 + 43 2J 3 + # 3J4), (94)

where

dx X dx
+ I, = (l. =5f' (I " (95)
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By residue theory, one shows easily that
2ff( 1 2 5 4

(l, 12, 13, 14) = 21r 1 2 5 ' (96)V3- 9 27' 243

and

21r 1 1 2 14
(JI, J2, J3, J4) = 1/3-3, 9, 27' 2-43 (97)

From (92), (94), (96), and (97), we obtain a single numerical relation between
(Tu/Tso), j9 = AT,1Tso, and D. Figure 4 shows a plot of AT, versus D, for several
values of Tu, when Tsu = 5800 K. The value of AT, is insensitive to the umbral
temperature Tu, but very sensitive to the aspect ratio D. It is clear that a shallow spot
(D - 1) in the inhibition theory has an intense bright ring.

1500 -1500

ATP

500 --500

0 I2 3 4

D

Fig. 4. Peak excess temperature J T, (above photospheric) in the bright ring as a function of spot aspect
ratio D. for a photospheric temperature of 5800 K, and an umbral temperature of 4500 K (curve 1).

4000 K (curve 2), and 3500 K (curve 31.

We compare these results with those of other models. Parker (1974a) found
intense, narrow bright rings, the width being comparable with the temperature scale
height. This is not inconsistent with the present results, since Parker assumed that the
spot depth is much less than the temperature scale height. The present work requires
the opposite inequality. Although Eschrich and Krause (1977) do not identify the
width of the bright ring, nor do they give any numbers for it, their results presented
graphically appear to be consistent with the estimate (90) for the width of the bright
ring. Their results for the amplitude of the bright ring are somewhat smaller than but
quite comparable to our results. Spruit's (1977a) calculations show much weaker
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bright rings. He finds, for example, a bright ring with a temperature excess of about
20 K for a cylindrical spot of radius 5000 km and depth 1000 km. As one can show,
this implies that the flux missing from the umbra is spread over an area with a
diameter of the order of 500 000 km. Spruit attributes this rapid spreading to the
strong increase with depth of the conductivity in his model.

Consider now the problem of comparing bright ring models with observation. In
principle, the amplitude and scale of the bright ring are observable. In practice, the
situation is greatly complicated by the presence of a penumbra in a real spot. For
purposes of the present discussion, we will adopt the standard view that the umbra is
a measure of the basic, vertical, subsurface flux tube, whereas the penumbra is a
vertically thin region in the layers above r = I where the spreading magnetic field is
predominantly horizontal. The principal observed fact is that the penumbra is darker
than the normal photosphere whereas the models considered here require the
greatest temperature excess to be seen just outside the umbra.

There are (at least) two qualitative ways out of this dilemma. First, one can suppose
that the excess flux coming up just beneath the penumbra is converted into
mechanical energy, which propagates away. Both the Evershed effect and penumbral
waves are candidates suggested by observation. This idea cannot be tested obser-
vationally until there are detailed predictions about the nature of the mechanical
flux, and, most important, about where the mechanical flux is dissipated and becomes
visible as excess radiative flux.

A second possibility, considered quantitatively by Spruit (1977a), is that the
horizontal magnetic field of the penumbra also inhibits convection. In a thermal
model, this would appear as an additional thin region of lowered conductivity. The
entire region of lowered conductivity would then have the appearance of an inverted
top hat. The difficulty with this picture is that, as Parker (1974a), Eschrich and
Krause (1977), and we have shown, thin regions of inhibition produce intense bright
rings. In this case, the intense bright ring would appear just outside the penumbra.
Whether the rings would be too bright to be consistent with observations cannot be
said until detailed model calculations have been carried out. If the effective thermal
conductivity of the convection zone increases as rapidly with depth as Spruit (1977a)
has suggested, then as his calculations show, the bright ring outside a penumbral
model of this sort will indeed be weak.

5.4. THE DEPTH OF THE INHIBITION REGION

As the calculations in Section 5.3 show, the thermal inhibition theory, in its present
simple form, gives a relation (shown in Figure 4) between umbral temperature, bright
ring peak temp,'rature, and spot aspect ratio. Because of the masking effect of the
penumbra discussed above, we cannot draw any definite conclusions from the
present model about the depth of the inhibition region. However, two of our results
suggest that a shallow spot makes greater demands on the theory than a deep spot.
First, there is the peak bright ring temperature (Figure 4). The excess flux near the
umbral boundary becomes very large as D drops below 1. On the other hand a value
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of, say, D = 5 poses only a small theoretical problem, since the excess flux cor-

responds to a maximum excess temperature of the order of 50 K. The second result

suggesting deep spots concerns the increased internal spot temperature discussed in

Section 5.2. The increase is very large for shallow spots, but is quite small for D = 5.
We may ask whether a value D = 5 or greater is reasonable from the point of view

of dynamics. Weiss (1964) has tabulated, as a function of depth, the magnetic field

strength necessary to inhibit convection (the calculation being based on the idea that

the magnetic field will seriously interfere with the convection when the magnetic

energy density is comparable with the kinetic energy density of the convection).
Weiss finds that a field of less than 6000 G will interfere with convection throughout

the convection zone. Thus a modest contraction with depth of a flux tube with a

surface field of 3000 G is sufficient to give a deep region of inhibition.

5.5. CONCLUDING REMARKS

We summarize here the most important features of the present model:

(1) The umbral boundary is sharp even for deep spots. The horizontal scale for

temperature variations across the umbral boundary is the superadiabatic tempera-

ture scale height at the surface. Since the models of Eschrich and Krause (1977) and

Spruit (1 977a) also show a sharp umbral boundary, it seems safe to conclude that it is

a general consequence of the inhibition theory.

(2) The missing umbral flux shows up in the model as a bright ring around the

umbra. Since this is a consequence of flux conservation, it is a general feature of the

inhibition theory. The intensity of the bright ring, however, is highly model depen-

dent. In our model, in the model of Eschrich and Krause (1977), and in Parker's
model (1974a), shallow spots give intense bright rings. Spruit (1977a), however, finds
weak bright rings even for shallow spots. He attributes this to the strong horizontal
spreading of flux disturbances associated with the depth-dependent conductivity in
his models. All of the models agree in predicting weak bright rings for sufficiently
deep spots.

(3) Only a thin surface layer of the spot is cool. At a depth of several super-
adiabatic scale heights or more, the material directly beneath the visible umbra is
hotter than the surrounding normal atmosphere at the same depth. Although
Eschrich and Krause (1977) do not discuss this point, Spruit (private communication)
finds similar results, and it is probable that the subsurface heating is a general feature
of the inhibition theory.

In spite of the different descriptions of turbulent transport used by Eschrich and
Krause (1977), by Spruit (1977a), and in the present work, all of the models yield
surface temperature distributions resembling sunspots. This provides support for the
inhibition theory as an explanation of why sunspots are dark.
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Variations of the Sun's radius To obtain a numerical estimate we can, for example, use the

results of the study by Weiss' of magnetic flux tubes in the solar

and temperature convection zone, based on equipartition of magnetic energy and

due to magnetic buoyancy kinetic energy of convection. Weiss finds that a typical flux tube
has a total flux of 4 x 102" Mx. The radius and field strength of

LIVINGSTON' has recently measured a decrease in the surface the flux tube vary slowly from 5,000 km and 5,700 G at the
temperature of the Sun coincident with increased solar activity, bottom of the convection zone to 14,000 km and 600(G at
He interpreted the temperature drop as implying a correspond- photosphere. The ratio p./p. varies greatly, from 6 x 10-" at the
ing reduction in luminosity. I point out here that surface cooling bottom of the convection zone to 2.8 x 10-T' at the photosphere.
could also be due to a radial expansion of the Sun, with no Thus, the dominant contribution to AR will come from flux
attendant reduction in luminosity. There is a plausible physical tubes near the top of the convection zone. Using values given by
mechanism for such an expansion; namely, variations in Weiss for a and p.1/p. in equation (2), for R 1/R in the range
magnetic buoyancy due to variations in the magnetic flux in the 0.98-1.0, we obtain values of AR/R in the range 5 x -4' cos
convection zone over the solar cycle. to 2 x i0' cos 40. For example, a single flux tube at a depth of

The solar luminosity L may be expressed in terms of an 1,000 km at middle latitude gives AR/R - 2 x 10- . Now, to
effective surface temperature T as L = 4irR2o'T , where R is estimate the change in solar radius with the solar cycle, we need
the solar radius. For constant R, a decrease in T implies a to estimate the difference in total magnetic flux in the upper
decrease in L. Alternatively, there can be a cooling (or heating) convection zone between solar maximum and minimum. If we
of the surface due to a radial expansion (or contraction) of the assume that the total magnetic flux emerging at the solar surface
Sun with constant L. For small changes AT and AR with L is a good indicator of the total flux in the uppermost layers of the
constant, convection zone, then observations suggest a difference in total

AR AT flux of the order tO" Mx between solar maximum and mini-
- -2 - (1) mum. This is equivalent to some 25 or more of the individual flux
R T tubes discussed above and could imply a relative change in

As T -6,000 K, a drop in surface temperature of I K would radius AR/R - 5 X 1() or more and a corresponding drop in
correspond to a relative expansion AR/R -3 x 1 0 4. surface temperature of - 1.5 K or more.

The concept of magnetic buoyancy was introduced by Parker' Magnetic field strengths in the convection zone may be higher
and Jensen 3 and is an important ingredient in the solar dynamo. than the equipartition limit used in the estimate above. Indeed,
Consider an isolated magnetic flux tube of field strength B in the observations' have shown that almost all of the magnetic flux in
solar interior. The sum of the gas pressure p, and the magnetic the quiet photosphere is concentrated to strengths of 1,000-
pressure p,, = B2/8r inside the tube must balance the external 2,000 G, well above the equipartition limit, and the theory of
gas pressure p., so p, + p,, = p,, and p, < p,. If the flux tube is in Galloway, Proctor and Weiss6 predicts that magnetic fields will
thermal equilibrium with its surroundings (T, = T,), then the be concentrated to 10 times the equipartition limit or more by
density inside the tube is lower than the density of the surround- the convection. Equation (2) can be rewritten as
ings (pi <p.) and the flux tube is buoyant. Jensen' pointed out
that, because of the density depression inside a magnetic flux AR FB cos ,

tube, the presence of magnetic flux tubes in the solar interior will R 167rRRp,
cause the volume of the Sun to increase; thus, we would expect where F = ira 2B is the total magnetic flux in the tube. For a tube
the radius of the Sun to vary with the solar cycle, with maximum of fixed total flux, the relative change in radius is proportional to
radius occurring near sunspot maximum. Jensen's suggestion, the magnetic field strength. Thus, higher field strengths in the
which has attracted little previous attention, is pursued here. convection zone would increase the estimate of AR/R for a fixed

How much expansion and contraction of the Sun might we difference in total flux over the solar cycle. With higher field
expect due to variations in magnetic buoyancy over the solar strengths, flux tubes deeper in the convection zone would
cycle? A precise estimate would require detailed knowledge of contribute significantly to AR/R. Although there is uncertainty
the magnetic field distribution in the convection zone over the about magnetic fields in the convection zone, the estimates do
solar cycle and a complete calculation of the effect of the suggest that the surface cooling of -6 K observed by Livingston
magnetic field on the structure of the solar envelope. This is may be at least partly caused by expansion due to magnetic
beyond present capabilities, so instead a crude calculation is buoyancy.
used to get a very rough estimate. Consider a toroidal flux tube The historical record of measurements of the solar radius
that circles the Sun at spherical radius R, and constant latitude gives no clear or consistent picture-" . The currently accepted
4,. Let the tube have field strength B and cross-sectional radius value"' (R = 959.63" at I AU) dates back to 1891 and is subject
a. The mass of gas within the tube is less than would occupy the to correction for irradiation". Variability of R with amplitudes
same volume in the absence of the magnetic field. The difference ranging from -0.05" to -2" and periods of 7, 8, 11 and 22 yr has
in densities outside and inside the tube is given by been reported. Giannuzzi", for example, found variations in R

Ap = p. - p, = (p. - p,)/RT = pr,/RT, with amplitude 0.2-0.5" and period 22 yr. Meyermann" repor-
ted variations with total amplitude -0.15" (AR/R - 1.5 x 10-4)

where T, = T. = T, is the temperature of the flux tube and its and period 11 yr with maximum radius occurring very near
immediate surroundings. The total mass defect in the tube is sunspot maximum; this is in good agreement with the theoretical
equal to the volume of the tube times Ap, or argument above. Gethings finds variations in R with amplitude

AM = 21rR, cos 4, ira'pIRT, -0.1-0.2", but with no obvious correlation with the solar cycle.
Improved measurements of the solar radius over a solar cycle

Assuming that this mass AM is spread over a thin spherical shell are needed to test the ideas expressed here. Recent improve-
of mean radius R, and thickness AR, then the mass in this shell is ments" in the theoretical definition of the solar radius should
given by give a considerable increase in accuracy. Changes in opacity

AM = 4rR' ARP, during expansion may affect the visual change in solar radius.
Note that the solar oblateness measured by Dicke and Golden-

Equating the two expressions for AM gives berg" (AR/R - 5 x 10 ') and later disputed by Hill and Steb-

AR 0Ibins'
6 is an order of magnitude smaller than the variation in

=-Cos - ) L (2) mean radius estimated above. Even if the expansion due to
magnetic buoyancy is too small to produce a measurable change

This expression gives an estimate of the relative change in radius ini surface temperature, it may still be large enough to show up
due to a single toroidal flux tube. directly as a change in radius. Accurate monitoring of the solar
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Abstract

Umbral oscillations in sunspots are identified as a

resonant response of the umbral atmosphere to forcing by

oscillatory convection in the subphotosphere. The full,

linearized equations for magneto-atmospheric waves are solved

numerically for a detailed model of the umbral atmosphere, for

both forced and free oscillations. Resonant "fast" modes are

found, the lowest mode having a period of 153 s, typical of

umbral oscillations. A comparison is made with a similar

analysis by Uchida and Sakurai (1975), who calculated resonant

modes using an approximate ("quasi-Alfven") form of the wave

equations. Whereas both analyses give an appropriate value

for the period of oscillation, several new features of the

motion follow from the full equations.
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1. Introduction

Observations of umbral oscillations in sunspots (Beckers

and Schultz 1972; Bhatnagar and Tanaka 1972; Giovanelli 1972;

Rice and Gaizauskas 1973; Phillis 1975; Moore and Tang 1975)

give a fairly consistent picture of the oscillations as a

resonant wave mode in the umbra. Doppler shifts in Ha and in

photospheric lines show a continuous periodic oscillation in

sunspot umbrae, with a fairly well defined period in the range

145-190 s.

Moore (1973) has argued that the driving mechanism for

umbral oscillations is overstable oscillatory convection in a

shallow subphotospheric layer in the umbra (see also Mullan and

Yun 1973). Uchida and Sakurai (1975) also consider the driving

mechanism to be overstable convection, and they interpret the

umbral oscillations as a resonant response of the umbral

atmosphere to this forcing. Their resonant mode is a standing

quasi-Alfv6n wave trapped in the photosphere and chromosphere.

In a similar approach, Antia and Chitre (1979) identify the

umbral oscillations with an overstable fast magneto-atmospheric

wave mode in the umbra. Their calculations account more fully

for the effects of compressibility.

In this paper, we adopt a point of view very close to that

of Uchida and Sakurai (1975). We shall argue that the umbral

oscillations are a resonant response to overstable convection

in a thin subphotospheric layer and that the resonant wave mode
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is a fast magneto-atmospheric wave. Our basic model atmosphere

is similar to Uchida and Sakurai's. There are, however, several

fundamental differences between our work and Uchida and Sakurai's

which lead to a new understanding of the umbral oscillations.

These differences include the following:

(1) We do not adopt the approximation that leads to the

quasi-Alfv~n wave; rather, we solve the complete linearized

magneto-atmospheric wave equations. We show that, although

the quasi-Alfven approximation yields a good estimate of the

period of oscillation, it fails to describe certain important

features of the motion.

(2) Instead of assuming a reflecting lower boundary at

the base of the photosphere, we include a semi-infinite lower

layer in our model atmosphere to represent the umbral convection

zone. We show that, as far as umbral oscillations are concerned,

this lower layer acts much like a reflecting boundary, but not

for the reasons given by Uchida and Sakurai.

(3) In addition to calculating free eigenmodes of oscill-

ation in our model atmosphere, we also calculate the response

to forcing at different frequencies.

(4) We show that the downward reflection of wave energy

is not total, but that a small fraction of energy escapes into

the corona in the form of acoustic waves along the magnetic

field lines.
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2. Basic Equations and the Umbral Model

In our simplified treatment of a sunspot umbra, we consider

the undisturbed magnetic field to be uniform and vertical,

B= (O,O,B ). The atmosphere is assumed to be a compressible,

inviscid, perfectly conducting gas under uniform gravity

g(= 0.274 km s- 2) in the negative z-direction. The undisturbed

pressure p(z), density p(z), and temperature T(z) are

functions of height z only, and hydrostatic equilibrium

requires that

dp = -

We then consider small adiabatic perturbations of this equilibrium

atmosphere. There is no preferred horizontal direction, so in

cartesian coordinates we may take the horizontal wavenumber in

the x-direction and assume that the perturbation velocity

u = (u,v,w) has the form u = ^(z)exp[i(kx-wt)], with

i(z) = [uf(z), V'(z), '(z)]. Starting with the linearized equations

of induction and conservation of mass, momentum, and energy, we can

eliminate the perturbations in pressure, density, and magnetic

field and arrive at a single vector equation for the perturbation

velocity (cf. Ferraro and Plumpton 1958). The y component of

this equation is

2 d2  2A 0[VA dz2
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where vA = (B2/4lyp(z)) is the Alfvgn speed. This equation

is decoupled from the other two components and represents a

pure, transverse Alfven wave with horizontal, incompressible

motion. The x and z component equations are

2d22 c 2- + ikc 2dz- - g ] = 0, (2)

(v (-L- - 02 )- wjf
Ad 2  d 2 d

[c -2- yg -+2w + ik[c a- (y-i)g = 0, (3)dz 2

where c = (yRT(z)) is the sound speed and y is the ratio

of specific heats. Equations (2) and (3) represent fully

coupled magneto-atmospheric waves in which compression, buoyancy,

and magnetic forces all play a role.

Equations (2) and (3) also describe the vertical dependence

of waves in cylindrical coordinates (r,O,z). If we take the

perturbation velocity u = (ur,U0 ,Uz) in the form

ur = u(z) [kJ m 1 (kr) -rJm(kr) ]exp[i(mO wt)], (4)

J (kr)
u -im u(z) m exp[i(m6-wt)], (5)

u = -ik (z)J m(kr)exp[i(mO- wt)], (6)

we arrive at equations identical to (2) and (3), except that in

this case k is a radial wavenumber. We shall consider only

axisymmetric modes (m=0), for which u0 = 0 and
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ur = kQ (z) J1 (kr)exp(-iwt), (7)

uz = -ik C^(z)J 0 (kr)exp(-iwt). (8)

(There are also axisymmetric modes with u0  0, representing

pure, torsional Alfven waves; these are not represented by

the form (4)-(6).) If we require, as Uchida and Sakurai do,

that the radial velocity ur vanish at the edge of the umbra,

r =a, then there is a discrete set of radial wavenumbers k.)

defined by J1 (kja)= 0. We shall consider only the first zero

of Jl1 ka= 3.83, and take the same value k- I = 1100 km as

Uchida and Sakurai, corresponding to an umbral radius

a= 4200 km.

The temperature distribution T(z), and hence the density

distribution p(z), must be specified to represent the umbral

atmosphere. We adopt as our model umbra the three-layer

atmosphere shown in Figure 1. This same atmosphere was used in

a previous study of reflection of Alfv6n waves in the umbra

(Thomas 1978), and the upper two layers are identical to the

model atmosphere of Uchida and Sakurai. Layer 2, representing

the umbral photosphere and chromosphere, is isothermal at

temperature T . Layer 3 represents the corona and is isothermal

at temperature T1 (>T0 ). The transition region is represented

as a discontinuity in temperature (and density) at height z = zt.

Layer 1, which represents the umbral convection zone, is assumed

to have a linear temperature distribution T(z) =T -8z
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with 8 > 0. The value of the temperature gradient 8 may

be chosen equal to or slightly greater than the adiabatic

gradient 8 = g/C . Let a =H 0S/T be a nondimensional

measure of the temperature gradient 8 in layer 1, where
H o =RT /g is the density scale height in layer 2. The

temperature, density, sound speed, and Alfv4n speed in each

layer are then given as follows.

Layer 1 (z< 0):

T(z) T (1 H RT /g
0 H 0 0

1-a
p) = 0(i- z.(0 (9)

2 2 2
c (z) = c (1-jf-), co  yRT

0

2 2 al 2 2v A ( Z ) = V ~ o I -) - -, V o B B / 4 Trp o
AAo H ' Ao 0 0

0

Layer 2 (0 !5 z zt ):

T(z) = TO, H° = RT /g,

P(Z) = PO exp(-z/H0 ), (10)

c2 (z)= c 2  YRTo,

2 2 v/ 2 B2/4pVA(z) = vAo vAo 0 Po
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Layer 3 (z >zt):

T(z) = TI, H1 = RT1/g

P(Z) = p ()exp-z/H -(z-)/H I] ,

2 2 = T
c (z) = c1 = yRT1,

2 2 TIVA(Z) =VAo(-)exp[zt/H + (z-zt)/H I ]
0

We note here that, although we do compute solutions of

the wave equations (2) and (3) in the entire three-layer

atmosphere, we also present results for simpler versions of

the atmosphere, where the lower layer is replaced by a reflect-

ing boundary or where the upper layer is omitted and layer 2

extends to z= -.

For comparison with observations, we adopt the following

numerical values for the parameters in our umbral model:

T o =4500 K, T1 =2x106 K, BO = 1000 G, Po =5x107 g cm
- 3

y =5/3, and a = 0.5. The sound speed and density scale height

in layer 2 are then co =7.9 km s
-1 and Ho 0136.5 km, and

the Alfv6n speed at z = 0 is vAo= 4.0 km s- I  We take the

height of the transition region to be zt = 20 H° = 2730 km.

3. Analysis

In order to compute wave modes in our model umbral atmos-

phere, we need to solve the basic coupled wave equations (2)
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and (3) for two specific cases, uniform temperature (layers 2

and 3) and linearly varying temperature (layer 1). Consider

first the isothermal case. The problem of magneto-atmospheric

waves in an isothermal atmosphere with a uniform vertical

magnetic field was first treated by Ferraro and Plumpton (1958)

in an important early paper that has escaped notice in subsequent

treatments of this problem by Uchida and Sakurai (1975) and

Hollweg (1979). Ferraro and Plumpton solve the full wave

equations (2) and (3), whereas Uchida and Sakurai and Hollweg

solve approximate forms of the equations which hold only in

2 2the case c << v A. This approximation is not good in the low

photosphere, so we prefer to use the full equations. In

contrast to the case of a uniform horizontal magnetic field

(Nye and Thomas 1976), the wave equations for an isothermal

atmosphere with a uniform vertical magnetic field do not have

solutions expressible in terms of tabled special functions.

Ferraro and Plumpton construct power series solutions to the

equations and give only limited numerical results. For our

purposes, it is more convenient to rely on direct numerical

integration of the equations.

It is useful to have asymptotic solutions of the wave

equations for large z. Suppose the transition zone is absent

2 2and layer 2 extends to z Then, for large z, vA >>c

and the asymptotic solutions of Equations (2) and (3) for

z-* are (cf. Ferraro and Plumpton 1958)
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2
u(z) -A exp(-Kz/H o ) + B exp(-z/2H )exp[±i( -) z/Ho ] ,  (12)

00 0

w(z) ~C exp(z/2H0 )exp[±i(2_ Z/H0 1, (13)

where K= H k is a nondimensional horizontal wavenumber and0

Q=H 0W/C is a nondimensional frequency. For 0 > the plus

sign in the exponents corresponds to an upward propagating

wave and the negative sign to a downward propagating wave.

The acoustic cutoff frequency corresponds to 02 , and for

Q< the asymptotic solution represents purely evanescent

behavior.

The case of a linear temperature variation (layer 1) has

not been studied previously. We have not found a useful

representation of the solution to the wave equations in terms

of special functions, so we again use direct numerical

integration.

In analyzing our computed solutions, it is useful to

consider the distribution of wave energy density with height.

The total energy density E is given by

2 2 + , + 2 _+) + (1)_ 2C 2

Q2 (14)

+ P( 0_ w2 + P -A2[H2(dZ) 2 +K u2]
yg,,2) c 2od

where

N2  - 2
N H 2

0 co
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in layer 2,

2

y H1 c

in layer 3, and

N2 =[ a( I gY (1 -___i H

0

in layer 1. The five terms on the right hand side of equation

(14) represent, in order, the kinetic energy density due to

horizontal motions, the kinetic energy density due to vertical

motions, the potential energy density associated with adiabatic

compression or expansion, the potential energy density associated

with the buoyant force, and the potential energy density stored

in the magnetic field perturbation.

The wave equations (2) and (3) are solved numerically

using a generalized Newton-Raphson relaxation method. The

equations are written as a set of linear, first-order ordinary

differential equations with the velocities (and eigenvalues,

if desired) expressed as some trial value plus a correction.

They are then linearized with respect to the corrections. The

atmosphere is divided into a grid of equally spaced points.

Grid spacings between 0.1 H and 0.25 H give sufficient0 0

accuracy in all of the calculations. Using a finite difference

scheme, the calculation is started at one boundary, and, using

the equations, the corrections to the initial trial values are

calculated at each internal grid point. The conditions at the
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other boundary close the set of equations for the necessary

corrections at every mesh point. The corrections are then

added to the velocities (and eigenvalues) giving the trial

quantities for the next iteration. The process is repeated

until the maximum correction divided by the associated quantity

is less than some pre-assigned value (0.1%).

4. Forced Oscillations

To simulate the forcing by overstable convection in a

thin subphotospheric layer we apply an oscillation of fixed

frequency and horizontal wavenumber and of unit amplitude on

the plane z= 0. We consider separately the forcing due to

a purely horizontal motion (6(0) =1, W(0) = 0) and a purely

vertical motion (Q(0) = 0, 1(O) = 1) at z = 0. A true repre-

sentation of the forced oscillations will then be some linear

combination of these two forced solutions.

We shall consider these forced solutions in two stages.

First we consider only a two-layer atmosphere consisting of

layers 1 and 2, with layer 2 extending to z = - and with

layer 3 (the corona) absent (i.e., zt+ ). Then we consider

solutions for the full three-layer atmosphere. This approach

will elucidate the role of the chromosphere - corona transition

in providing downward reflection of wave energy.

4.1 TWO-LAYER MODEL

Here layer 2 is semi-infinite (zt-) and layer 3 (the
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corona) is absent. In layer 2 we assume that the asymptotic solu-

tion (12),(13)is valid above z =20 H and use this as an
0

end point of our numerical integration. At z = 20 H0 we

apply an outward radiation condition, that is, we allow only

outward propagation (in the positive z-direction) of energy.

This leads to the following matching conditions at z = 20 Ho:

d 1 xp(-KZ/Ho ) +  [i(2- ) - ]exp(-z/2H )exp[i(2 - ) z/H 0]o

dz Ho exp(-z/2H )exp[i(2_) z/H] -1 exp(-Kz/Ho) (15)

d~ 1 2
d 1 [i(2 -k) + ] = 0.dz H

0

The solution in layer 1 is more difficult to obtain because

there is no simple asymptotic form in the region of interest.

We obtain a simple condition of outward propagation (in the

negative z-direction) by considering the kinetic energy

density, which must remain finite as z -+-. Since the

density is increasing linearly (for cv= ), the velocity

components must drop off at least as fast as z-1. Consequently,

the derivatives must drop off even faster so we apply the

conditions

d 0, dz 0 (16)
dz z

at some depth z = -h. To insure that the error introduced by

this is smaller than our allowed numerical error (0.1%), the

value of h is increased until changes in h have no effect
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on u and W^. We found such a suitable value to be h=-20 H0

In summary, we evaluate numerically the solution for

either horizontal (Q(0) =1, W(O) =0) or vertical (0(0) =0,

w(0) = 1) forcing, subject to the outward radiation conditions

(15) and (16), applied at z= 20 H°  and z =-20 H0 ,

respectively. In the resulting solutions, dO/dz and dQ/dz,

and hence the pressure and magnetic field perturbations, are

discontinuous across z =0. This is acceptable in view of

the fact that the plane z = 0 represents an overstable layer

of finite thickness.

In the case of horizontal forcing (0(0) =1, ;(0) = 0),

we have computed solutions for a fixed wavenumber K =0.124

(corresponding to k-1 = 1100 km and H = 136.5 km) and for0

many different frequencies. Figure 2 shows a plot of the peak

energy density (which occurs at some z 0) of the forced

oscillation as a function of the forcing frequency 0. This

graph clearly shows the existence of a resonant response at

certain frequencies. Numerical values of the first three

resonant frequencies QR determined in Figure 2 are listed

in Table 1, along with the corresponding dimensional periods

using the numerical values of atmospheric parameters listed

in Section 2. Each of these frequences lies above the acoustic

cutoff frequency, Qc = 1/2 (wc = C /2H ) and the resonant

modes are "fast" magneto-atmospheric waves. Similar calcula-

tions for the case of vertical forcing show a resonant response
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at the same resonant frequencies as in the case of horizontal

forcing. The period of the lowest resonance, 153 s, lies

comfortably in the range of observed periods of umbral

oscillations.

Figure 3 shows the solution for the horizontal velocity

Q(z) as a function of height in layer 2 for each of the first

three resonant frequencies. The computed magnitude is finite

in each case because the resonant frequency is only approxi-

mately matched. These first three resonant modes closely

resemble the corresponding free eigenmodes computed by

Uchida and Sakurai (1975, Figure 3) for their model; we

shall say more about this correspondence in Section 5. Each

higher resonance has an additional node in the solution for

u (z). The numerical solutions for Q(z) agree with the

asymptotic solution to within 0.1% for z Z 6Ho; this more

than justifies our matching to the asymptotic solution at

z =20H

The horizontal velocity u(z) tends toward zero as

z-+, due primarily to the exponentially increasing Alfv4n

speed. The vertical velocity, however, grows with height,

eventually increasing exponentially according to its

asymptotic form (13). Because of this rapid growth it is

more convenient to plot the logarithmic derivative

H (d /dz)/ than w in this layer. Figure 4 shows the

computed magnitude of this logarithmic derivative as a function

of height is the upper layer, for horizontal forcing at the
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II
lowest resonant frequency. We see that IH (d,/dz)/WI

attains its asymptotic value 9 (cf. Equation (13)) for

z ; 10H o.

The behavior of the vertical velocity in this case of

purely horizontal forcing is of some interest. Although

vertical motions are not forced directly (t(0) = 0), they

are produced above and below z = 0 by the "squeezing" effect

of the divergent horizontal motions. In the upper, isothermal

layer vertical motions can propagate upward in the form of a

pure acoustic wave along the magnetic field lines. Since the

sound speed is constant in the upper layer, there is no

downward reflection of such an acoustic wave, and it will

propagate indefinitely upward with growing amplitude due to

decreasing density. This provides a mechanism for escape of

energy, which means we are not dealing with a perfect resonator.

For horizontal forcing at our chosen frequency and wavenumber,

however, only a small fraction of the energy is converted into

acoustic energy that escapes to z=-. Figure 5 shows the

distribution of total energy density (Equation(14)) with

height for the lowest resonance. The normalized curve is

identical for horizontal and vertical forcing. For positive

z the energy density drops sharply at first and then levels

off rather abruptly at z - 5H to a nearly constant value of

about 2% of the peak value. By considering individual terms

in the expression for total energy, Equation (14), we have

established that nearly all the energy near z = 0 is in the
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form of magnetic energy and kinetic energy due to horizontal

motion, whereas for z z 5H the energy is nearly all due to

vertical motions, buoyancy, and compression. The sharp drop

in energy density between z = 0 and z = 5H is due to0

strong downward reflection by the exponentially growing Alfvdn
speed. The small, constant energy density above z =10H0

represents escaping energy in the form of a pure acoustic

wave along the vertical magnetic field lines.

For forcing at the resonant frequency, the velocities

and energy density in layer 1 (z < 0) are much smaller than

in layer 2 (z > 0) and are therefore shown separately.

Figure 6 shows the horizontal and vertical velocities and

the total energy density in the lower layer for both horizontal

and vertical forcing at the lowest resonant frequency. For

horizontal forcing, the horizontal velocity drops off rapidly

with depth and the vertical velocity rises to a maximum at

z - -2H before decaying rapidly as z- . The purely

horizontal, compressive (k O0) motion at z =0 induces

vertical motions for z < 0 through a "squeezing" action.

The resulting compressive vertical motions below z =0 have

an acoustic character and are reflected strongly upward by

the increasing sound speed. For vertical forcing, horizontal

motions are produced below z = 0 by a similar "squeezing"

effect, but to a lesser extent. The total energy in the lower

layer is less for the case of vertical forcing.

The buoyant force is not important in causing upward
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reflection in layer 1. Solutions for the case a = (y-l)/y = 0.4,

corresponding to an adiabatic temperature gradient (neutral

stability) in layer 1, have the same character as the solution

in Figure 6, for which a =0.5 (slightly superadiabatic).

For forcing at the lowest resonant frequency, the total

energy density in the lower layer is six orders of magnitude

smaller than in layer 2, and hence doesn't even appear in

Figure 5. The resonant modes are almost totally confined to

layer 2. To illustrate the sharpness of the resonant response,

it is useful to look at the response to forcing at a frequency

slightly off resonance. Figure 7 shows the distribution of

total energi density for both horizontal and vertical forcing

at frequency QZ= .743, about 4% above the lowest resonant

frequency. For horizontal forcing, the normalized energy

density distribution in the upper layer is nearly identical

to that of the resonant response (Figure 5), but the actual

numerical values are six orders of magnitude smaller and

there is comparable total energy in layer 1 (z < 0). For

vertical forcing at this off-resonance frequency, the energy

density only drops to 36% of its peak value as z--, and

there is considerably more outward leakage of energy than in

the resonant response. In this case, we expect the presence

of the corona (layer 3) to have an important influence. For

z > 5Ho, the energy density is almost completely due to

acoustic-like motions along the magnetic field lines; such

motions will be reflected strongly at the chromosphere-corona

transition.
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4.2 THREE-LAYER MODEL

In Section 4.1 above we have established that there is a

resonant response of the umbral atmosphere, at a frequency

appropriate to umbral oscillations, in a two-layer model

atmosphere without a corona. The necessary downward reflection

is provided by the rapidly increasing Alfv4n speed in layer 2

(the photosphere and chromosphere). Indeed, the energy density

of the resonant response has dropped to 2% of its peak value

at the assumed height of the transition region, zt = 20 H
0

(Figure 5). Thus, for umbral oscillations, we find the

presence of the high-temperature corona to be of only minor

importance. This is in sharp contrast with Uchida and

Sakurai (1975) who place heavy emphasis on downward reflection

of energy at the transition region.*

For completeness, we consider the effect of the

chromosphere-corona transition region on the lowest resonant

response. We have calculated the response to horizontal and

vertical forcing in the full three-layer model atmosphere

(Section 2), with the transition region at zt =20 H0. The

solution in layer 3 (the corona) is subjected to the outward

radiation condition (15), with H replaced by H1I at

z = 40 Ho . Figure 8 shows the distribution of total energy
0

density, which is the same for both horizontal and vertical

*Their emphasis on reflection at the transition region is
unwarranted, however; an investigation of their analytical
solution shows that almost all of the reflection occurs below
the transition region, consistent with our model.
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forcing. A comparison of Figures 5 and 8 shows that the

small fraction of wave energy at z = zt = 20 H is almost

totally reflected downward by the sharp temperature rise.

The energy density for z > 20 H is three orders of magni-

tude smaller than at z - 20 H and doesn't show up on the

scale of these graphs. The downward reflection at z =z t

also sets up a standing wave pattern that leads to the small

oscillations in energy density with height above z = 5 H0 ,

visible in Figure 8.

Downward reflection at the transition region is of more

importance in the case of forcing at off-resonance frequencies,

where a higher fraction of the peak wave energy penetrates

to the height of the transition.

5. Free Eigenmodes

The results of our investigation of the resonant response

of the umbral atmosphere to forcing at z =0 allow us to take

a simpler approach to the problem. We have seen that the

forced resonant modes are strongly reflected in layer 1 (z < 0),

with negligible wave energy in that layer. Thus, at least as

far as the resonant modes are concerned, it is reasonable to

replace layer 1 by a rigid, perfectly conducting lower boundary

at z =0. Uchida and Sakurai (1975) assume such a lower

boundary in their analysis of quasi-Alfv6n waves; however,

their stated justification for this is quite different than

ours. Uchida and Sakurai argue that the region below z =0
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acts as an almost rigid boundary because of the higher density

there. However, Thomas (1978) has shown that pure Alfv~n waves

are only weakly reflected when propagating downward into a

region identical to layer 1; thus, Uchida and Sakurai's

reasons for assuming a rigid lower boundary are questionable.

In our present calculations with the complete wave equations,

including the effects of compression, we find that it is the

compressive nature of the wave motions and the increasing

temperature (and sound speed) with depth that lead to strong

upward reflection from layer 1.

Our results for forced resonances also show that there

is strong downward reflection in the isothermal layer (layer 2),

with only a very small fraction of the wave energy reaching as

high as the chromosphere-corona transition region. This

suggests that, instead of an outward radiation condition at

some height, we could simply assume another perfectly reflect-

ing boundary at some sufficiently large height z = h without

changing the nature of the wave mode appreciably.

As a simplified model of umbral oscillations, then,

we can look for free eigenmodes of oscillation in an isothermal

layer (layer 2) bounded above and below by perfectly reflecting

rigid boundaries. We seek solutions to the wave equations (2),

(3) in the isothermal region 0 '-z-5 h, subject to the

boundary conditions

=w= 0 at z =0, h
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We expect that the calculated eigenmodes will be fairly
independent of h for sufficiently large h (h 10 H for

the lowest mode) because most of the downward reflection will

have occurred below z =h.

Our method of solution is to choose a value of h and

calculate the eigenmodes and eigenfrequencies 0 E using our

numerical procedure. The calculations are then repeated for

a larger value of h to assure that we have achieved the

desired accuracy (Q E to three significant figures). The

resulting eigenfrequencies 0 E for the first three modes are

listed in Table 1 for comparison with the resonant frequencies

R determined from the forced solutions. As exoected, the

agreement between QR and 2E is good. The computed eigen-

modes resemble very closely the resonant modes shown in

Figure 3.

An even simpler analytical approach to the free eigenmodes

is possible. The nature of the eigenmodes is most closely

associated with the horizontal motions, with the vertical

motions playing a passive role. This suggests that we can

neglect the terms involving the vertical velocity r in the

equation for the horizontal velocity 6, Equation (2). This

gives a closed equation for ii, and the vertical motion

is obtained by solving Equation (3) with the known i(z).

This is the "quasi-Alfvdn" approximation of Uchida and

Sakurai (1975), which is also used by Hollweq (1979). These

authors justify the approximation solely on the basis that
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2 2
vA >> , which is not true in the lower part of the atmosphere

where much of the energy of the eigenmodes resides; in fact,
2<c2

vA <c at z= 0 in both Uchida and Sakurai's and our umbral

model. The real justification for the approximation low in

the atmosphere is that the actual computed values of the terms

involving w in Equation (2) are much smaller than terms

involving u for the computed eigenmodes. High in the

atmosphere the approximation is valid on the basis that

2 2vA >> c

Under the quasi-Alfv6n approximation, Equation (2) reduces

to

v A  d2fi K2 A
2 2 2 - +- u= (18)

c dz H 2H o
000 0

2 2 epzH )  Teslto
in an isothermal layer where vA v 2 exp(z/H The solution

A Ao 0

to this equation satisfying the conditions (0) = 0 and

u- 0 as z- is given in terms of Bessel functions in the

form

r 2c 2 2
n(z) = J2 KL (n _ K) exp(-z/2Ho)], (19)

where 2

vA° .2 + g2 (20)'
2 32K,n

n c2

and where 32K,n is the nth zero of J2K(z). We consider

the eigenfrequencies Q2 as approximate values of the
n
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eigenfrequencies QE computed using the full wave equations

and denote them by the symbol 0E" Values of RE for the

lowest three eigenmodes are given in Table 1. The values of

SE are indeed close to the corresponding values of 0E and,

coincidentally, even closer to the corresponding values of

Q mR . Thus, the simple quasi-Alfv4n solution (19), (20), which

is similar to that of Uchida and Sakurai (the upper boundary

condition is slightly different), gives a good estimate of

the oscillation period even though certain details of the

wave motion are lost.

6. Conclusion and Discussion

We identify umbral oscillations with the lowest resonant

mode of fast magneto-atmospheric wave in our model umbral

atmosphere. The trapping of this resonant mode is due

primarily to the increasing Alfvgn speed upward into the

chromosphere and the increase in sound speed downward into

the convection zone; thus, both the magnetic and acoustic

nature of the wave are quite important, with buoyancy playing

a smaller role. This trapping mechanism is similar to that

proposed for running penumbral waves by Nye and Thomas (1974,

1976), for the case of a horizontal magnetic field. In the

present case, the downward reflection is not complete; a

small fraction of the total energy in the mode escapes to

large heights by converting into the form of an acoustic

wave along the vertical magnetic field lines. This small
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energy leak may be important in heating the corona above an

active region. Downward reflection from the corona is unim-

portant in determining the character of umbral oscillations,

since most of their energy is reflected well below the transi-

tion region.

The period of umbral oscillation in our model, for our

assumed values of the parameters (Section 2), is 153 s. If

we change only the value of the magnetic field strength, we

would of course change this period. However, we accept the

convincing argument of Uchida and Sakurai (1975) that over-

stable convection occurs only at a level where the Alfven

speed is not too different from the sound speed. Above or

below this level the magnetic field lines are too stiff or

too weak, respectively, for overstable oscillation to occur.

This means that, regardless of the field strength of the umbra,

the value of the Alfv~n speed VAo at the level of forcing z =

0 is roughly the same. According to Uchida and Sakurai, this

accounts for the fairly narrow range of observed periods of

umbral oscillation among spots of widely differing field strength.

In terms of our model, it means that we represent different

sunspots by changing the field strength Bo and the level of

forcing z = 0 simultaneously, with VAo, and hence the period of

oscillation, nearly unchanged. The observed spread of oscillation

periods is more likely due to variations in the size of sunspots,

that is, variations in the horizontal wavenumber k.
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Finally, a comment should be made concerning the possible

cooling of sunspots by magnetohydrodynamic waves. One of us

(Thomas 1978) has shown that pure Alfvgn waves (k = 0) are

reflected strongly downward in the umbral photosphere, but

are only weakly reflected upwards in the umbral convection zone.

This left open the possibility of cooling by downward -

propagating waves. However, it was speculated that when more

realistic magneto-atmospheric waves, including the effects of

compression, are considered, the upward reflection would be

much stronger. The results for layer 1 in the present paper

confirm this. The upward reflection of waves in layer I is very

strong for the horizontal wavenumber k considered here and also

for higher values of k. This, together with the results of

Thomas (1978), argues strongly against significant cooling of

sunspots by waves.
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TABLE 1

The nondimensional resonant frequency QR for forced oscillations

(Section 4.1), the exact free eigenfrequency QE (Section 5), and

the approximate free eigenfrequency E (Section 5), for the
E

lowest three modes (n=1,2,3) in each case. The dimensional

periods TR, corresponding to the values of OR' are based on

the values T = 4500 K, B = 1000 G.o 0

t(s)n R E E R

1 0.712 0.743 0.713 153

2 1.51 1.52 1.50 72

3 2.33 2.46 2.29 47
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Fig. 1. The three-layer model of the umbral atmosphere.

Fig. 2. Peaks energy density E as a function of the forcing
max

frequency Q for horizontal forcing in the two-layer

model atmosphere. Each plotted point represents the

result of a numerical solution. The numerical values
-1

of Emax are based on the forcing amplitude 0(0)=l km s

Fig. 3. The normalized horizontal velocity as a function of

height in layer 2 for the lowest three resonant fre-

quencies in the two-layer model atmosphere. Each higher

mode has an additional node and all the profiles have

the same asymptotic behavior for large z.

Fig. 4. The logarithmic derivative of the vertical velocity

as a function of height in layer 2 for the lowest re-

sonant frequency in the two-layer model atmosphere.

Fig. 5. The total energy density E as a function of height in

layer 2 for either horizontal or vertical forcing at

the lowest resonant frequency in the two-layer model

atmosphere.

Fig. 6. Horizontal and vertical velocity profiles and the total

energy density distribution in layer 1 for horizontal

forcing (a,c) and vertical forcing (b,d) at z=O. The

horizontal velocity 0 is the solid curve and the verti-

cal velocity 0 is the dashed curve.

Fig. 7. The total energy density E as a function of height in

layer 2 for horizontal (solid curve) and vertical

*(dashed curve) forcing at 0=0.743, about 4% above the

lowest resonant frequency, in the two-layer model
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atmosphere.

Fig. 8. The total energy density E as a function of height in

layers 2 and 3 for either horizontal or vertical

forcing in the three-layer model atmosphere. The energy

density drops three orders of magnitude across the

transition region z=zt=20 H and is not visible above

z=z t at this scale.
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